Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2005 | 3 | 4 | 705-720

Article title

Oxidative polymerization of acrylamide in the presence of thioglycolic acid


Title variants

Languages of publication



Chemical polymerization of acrylamide at room temperature was examined by using thioglycolic acid-cerium (IV) sulfate and thioglycolic acid-KMnO4 redox systems in acid aqueous medium. Water soluble polyacrylamides containing thioglycolic acid end groups were synthesized. The effects of the molar ratio of acrylamide to Ce(IV) nAAm/nCe(IV), the polymerization time, the temperature, the monomer concentration, the molar ratio of cerium (IV) sulfate to thioglycolic acid and the concentration of sulfuric acid on the yield and molecular weight of polymer were investigated. Lower molar ratios of acrylamide/Ce(IV) at constant monomer concentration resulted in an increase in the yield but a decrease in molecular weight of polymer. The increase of reaction temperature from 20 to 70°C resulted in a decrease in the yield but generally resulted in a constant value for the molecular weight of polymer. With increasing polymerization time, the yield and molecular weight of polymer did not change substantially. Ce(IV) and Mn(VII) ions are reduced to Ce(III) and Mn(II) ions respectively in the polymerization reaction. The existence of Ce(III) ion bound to polymer was investigated by UV-visible spectrophotometry and fluoresce measurements. The amount of Mn(II) incorporated into the polymer was determined using graphite furnace atomic absorption spectrometry. The mechanism of this phenomenon is discussed.










Physical description


1 - 12 - 2005
1 - 12 - 2005


  • Department of Chemistry, Faculty of Engineering, Istanbul University, Avcilar, 34320, Istanbul, Turkey
  • Department of Chemistry, Faculty of Engineering, Istanbul University, Avcilar, 34320, Istanbul, Turkey


  • [1] A.S. Saraç: “Redox polymerization”, Prog. Polym. Sci., Vol. 24 (1999), pp. 1149–1204. http://dx.doi.org/10.1016/S0079-6700(99)00026-X[Crossref]
  • [2] H.F. Launer and D.M. Yost: “The kinetics of the reaction between potassium permanganate and oxalic acid”, J. Am. Chem. Soc., Vol. 56, (1934), pp. 2571–2577. http://dx.doi.org/10.1021/ja01327a013[Crossref]
  • [3] G.S. Misra and U.D.N.Bajpai: “Redox polymerization”, Prog. Polym. Sci., Vol. 8, (1982), pp. 61–131. http://dx.doi.org/10.1016/0079-6700(82)90008-9[Crossref]
  • [4] J.S. Shukla and D.C. Misra: “Aqueous polymerization of acrylamide initiated by acidic potassium permanganate-ascorbic acid redox system”, J. Polym. Sci. Polym. Chem. Edit., Vol. 11, (1973), pp. 751–762. http://dx.doi.org/10.1002/pol.1973.170110405[Crossref]
  • [5] D. Pramanik and A.K. Chaterjee: “Mechanistic studies on ceric-thiourea-initiated polymerization in acid aqueous media from end group analysis”, J. Polym. Sci. Chem. Edit., Vol. 18, (1980), pp. 311–319. http://dx.doi.org/10.1002/pol.1980.170180129[Crossref]
  • [6] C. Özeroğlu and T. Yalçinyuva: “Oxidative polymerization of methyl methacrylate in acid aqueous medium”, Polym-Plast. Technol., Vol. 43(3), (2004) pp. 731–743. http://dx.doi.org/10.1081/PPT-120038062[Crossref]
  • [7] N. Biçak and C. Özeroğlu: “Low temperature initiation by methylene bis(diethyl malonate)-Ce(IV) redox system in organic solvents”, Eur. Polym. J., Vol. 37, (2001), pp. 2393–2395. http://dx.doi.org/10.1016/S0014-3057(01)00155-0[Crossref]
  • [8] K.Y. Sui and L.X. Gu: “Preparation and characterization of amplihilic block copolymer of polyacrylonitrile-block-poly(ethylene oxide)”, J. Appl. Polym. Sci., Vol. 89(7), (2003), pp. 1753–1759. http://dx.doi.org/10.1002/app.12036[Crossref]
  • [9] A.S. Saraç, Ş. Özkara, B. Ustamehmetoğlu and E. Sezer: “Controlled electroinduced polymerization of methyl meyhacrylate in the presence of catalytic amount of Ce(IV)”, J. Macromol. Sci. Pure A, Vol. 40(2), (2003), pp. 193–207. http://dx.doi.org/10.1081/MA-120017260[Crossref]
  • [10] V.S. Ananthanarayanan and M. Santappa: “Kinetics of vinyl polymerization initiated by ceric ion in aqueous solution”, J. Appl. Polym. Sci., Vol. 9, (1965), pp. 2437–2449. http://dx.doi.org/10.1002/app.1965.070090708[Crossref]
  • [11] G. Mino, S. Kaizerman and E. Rasmussen: “The polymerization of acrylamide initiated by ceric nitrate-3-chloro-1-propanol redox system”, J. Polym. Sci., Vol. 38, (1959), pp. 393–401. http://dx.doi.org/10.1002/pol.1959.1203813410[Crossref]
  • [12] S.V. Subramanium and M. Santappa: “Ceric ion-reducing agent redox couple initiated vinyl polymerization”, Macromol. Chem., Vol. 112, (1968), pp. 1–15; “Vinyl polymerization initiated by ceric ion-reducing agent system in sulfuric acid media”, J. Polym. Sci. Part A-1, Vol. 6(3) (1968), pp. 493–504. http://dx.doi.org/10.1002/macp.1968.021120101[Crossref]
  • [13] S.R. Palit and R.S. Konar: “Permanganate-oxalic acid as an initiator of acrylonitrile polymerization in aqueous media: (III) Kinetics and degree of polymerization”, J. Polym. Sci. Part A, Vol. 2(4), (1964), pp. 1731–1748. http://dx.doi.org/10.1002/pol.1964.100020417[Crossref]
  • [14] S.R. Palit and R.S. Konar: “Permanganate-H2C2O4 as an initiator in aqueous media: (I) The initiating radical and general features”, J. Polym. Sci., Vol. 57, (1962), pp. 609–615; “(II) The kinetics and degree of polymerization”, J. Polym. Sci., Vol. 58, (1962), pp. 85–102. http://dx.doi.org/10.1002/pol.1962.1205716547[Crossref]
  • [15] G.S. Misra and H. Narain: “Aqueous polymerization of acrylic acid initiated by potassium permanganate-oxalic acid redox system”, Makromol. Chem., Vol. 113, (1968), pp. 85–94. http://dx.doi.org/10.1002/macp.1968.021130106[Crossref]
  • [16] M.M. Hussain and A. Gupta: “Effect of some additions on the aqueous polymerization of acrylamide initiated by permanganate-oxalic acid redox system”, Makromol. Chem., Vol. 178(1), (1977), pp. 29–36. http://dx.doi.org/10.1002/macp.1977.021780104[Crossref]
  • [17] O. Galioğlu, A.B. Soydan, A. Akar and A.S. Saraç: “Block graft copolymer synthesis via ceric salt”, Angew. Makromol. Chem., Vol. 214, (1994), pp. 19–28. http://dx.doi.org/10.1002/apmc.1994.052140103[Crossref]
  • [18] A.S. Saraç, C. Erbil and A.B. Soydan: “Polymerization of acrylamide initiated with electrogenerated cerium(IV) in the presence of EDTA”, J. Appl. Polym. Sci., Vol. 44, (1992), pp. 877–891. http://dx.doi.org/10.1002/app.1992.070440515[Crossref]
  • [19] C. Erbil, C. Cin, A.B. Soydan and A.S. Saraç: “Polyaminocarboxylic acids-Ce(IV) redox systems as an initiator in acrylamide polymerization”, J. Appl. Polym. Sci., Vol. 47, (1993), pp. 1643–1648. http://dx.doi.org/10.1002/app.1993.070470911[Crossref]
  • [20] A.S. Saraç, A.H. Başak, A.B. Soydan and A. Akar: “Polymerization of acrylamide by electrolytically generated Ce(IV)-organic acid redox system”, Angew. Makromol. Chem., Vol. 198, (1992), pp. 191–198. http://dx.doi.org/10.1002/apmc.1992.051980116[Crossref]
  • [21] C. Özeroğlu, O. Güney, A.S. Saraç and M.I. Mustafaev: “Polymerization of acrylamide initiated with Ce(IV) and KMnO4 redox systems in the presence of glycine”, J. Appl. Polym. Sci., Vol. 60, (1996), pp. 759–765. http://dx.doi.org/10.1002/(SICI)1097-4628(19960502)60:5<759::AID-APP15>3.0.CO;2-U[Crossref]
  • [22] C. Özeroğlu, O. Güney and M.I. Mustafaev: “Oxidative polymerization of acrylamide in the presence of L-threonine”, Angew. Makromol. Chem., Vol. 249, (1997), pp. 1–9. http://dx.doi.org/10.1002/apmc.1997.052490101[Crossref]
  • [23] C. Özeroğlu and A.E. Kurtoğlu: “The synthesis and characterization of acrylamide polymer containing R-(+)-cystein end groups”, Eur. Polym.J., Vol. 37, (2001), pp. 1053–1059. http://dx.doi.org/10.1016/S0014-3057(00)00188-9[Crossref]
  • [24] B. Ustamehmetoğlu, Z.I. Diler and A.S. Saraç: “Chemical polymerization of acrylamide initiated with Ce(IV)-dicarboxylic acid redox system: effect of chain length between the carboxyl groups”, Int. J. Polym. Anal. Ch., Vol. 7(4), (2002), pp. 263–272. [Crossref]
  • [25] A.S. Saraç, C. Özeroğlu and M.I. Mustafaev: “Ternary complexes of bovine serum albumin and polyacrylamide derivatives in the presence of copper ions in neutral water”, J. Bioact. Compat. Polym., Vol. 10, (1995), pp. 121–134.
  • [26] C. Özeroğlu, N. Namazova, M. I. Muatafaev and A.S. Saraç: “The complex formation between polyacrylamide containing glycine end groups and bovine serum albumin in the presence of copper(II) in neutral aqueous water”, Colloid Polym. Sci., Vol. 274, (1996), pp. 418–427. http://dx.doi.org/10.1007/BF00652463[Crossref]
  • [27] R.V. Petrov, M.I. Mustafaev and A.Sh. Norimov: Physicochemical Criteria for the Constraction of Artificial Immunomodulators and Immunogens on the Basis of Polyelectrolyte Complexes, Sov. Med. Rev. D. Immunol., UK Harwood Acadedemic Publisher GmbH, London, UK, 1992, pp. 1–113.
  • [28] M. Özcan, S. Akman and C. Özeroğlu: “The use of water soluble polymers for the preconcentration and separation of copper, lead and chromium prior to their determination by graphite furnace atomic absorption spectrometry”, Anal. Lett., Vol. 35(6), (2002), pp. 1075–1083. http://dx.doi.org/10.1081/AL-120004556[Crossref]
  • [29] M. Özcan, S. Akman, C. Erbil and A.S. Sarac: “Determination of copper, chromium, manganese and zinc by graphite furnace atomic absorption spectrometry after separation on polyacrylamide modified with nitriloacetic acid”, Fresen. J. Anal. Chem., Vol. 355(5–6), (1996), pp. 665–666.
  • [30] H.H. Chuah, D. Lin-Vien and U. Soni: “Poly(trimethylene terephthalate) molecular weight and Mark-Houwink equation”, Polymer, Vol. 42, (2001), pp. 7137–7139. http://dx.doi.org/10.1016/S0032-3861(01)00043-X[Crossref]
  • [31] J.H. Harley and S.E. Wiberley: Instrumental Analysis, John Wiley and Sons, Inc., New York, 1954, pp. 63–95.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.