Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2005 | 3 | 4 | 674-682

Article title

Molecule dynamics and combined QM/MM study on one-carbon unit transfer reaction catalyzed by GAR transformylase


Title variants

Languages of publication



Both a molecule dynamic study and a combined quantum mechanics and molecule mechanics (QM/MM) study on Glycinamide ribonucleotide transformylase (GAR Tfase) catalytic mechanism are presented. The results indicate a direct one-carbon unit transfer process but not a stepwise mechanism in this reaction. The residues near the active center can fix the cofactor (N10-formyltetrahydrofolate) and GAR in proper relative positions by a H-bond network. The transition state and the minimum energy pathway are located on the potential energy surface. After all the residues (including H2O molecules) are removed from the system the activation energy has increased from 145.1 kJ/mol to 243.3 kJ/mol, and the formly transfer reaction is very hard to achieve. The interactions between coenzyme, GAR and residues near the reactive center are discussed as well.











Physical description


1 - 12 - 2005
1 - 12 - 2005


  • School of Chemistry and Materials Science, Yantai Normal University, 264025, Yantai, China
  • Library of Yantai Normal University, 264025, Yantai, China
  • Institute of Theoretical Chemistry, Shandong University, 250100, Jinan, China
  • School of Chemistry and Materials Science, Yantai Normal University, 264025, Yantai, China
  • Department of Physics, Yantai Normal University, 264025, Yantai, China
  • Department of Physics, Yantai Normal University, 264025, Yantai, China


  • [1] J. Aimi, H. Qiu, J. Williams, H. Zalkin and J. E. Dixon: “De novo purine nucleotide biosynthesis: cloning of human and avian cDNAs encoding the trifunctional glycinamide ribonucleotide synthetase- aminoimidazole ribonucleotide synthetase-glycinamide ribonucleotide transformylase by functional complementation in E. coli”, Nucl. Acids. Res., Vol. 18, (1990), pp. 6665.
  • [2] P. Chen, U. Schulz-Gahmen, E. A. Stura, J. Inglese, D. L. Johnson, A. Marolewski, S. J. Benkovic and I. A. Wilson: “Crystal Structure of Glycinamide Ribonucleotide Transformylase from Escherichia coli at 3.0 Å Resolution”, J. Mol. Biol., Vol. 227, (1992), pp. 283. http://dx.doi.org/10.1016/0022-2836(92)90698-J
  • [3] R. J. Almassy, C. A. Janson, C. Kan and Z. Hostomska: “Structures of Apo and Complexed Escherichia coli Glycinamide Ribonucleotide Transformylase”, Proc. Natl. Acad. Sci., U.S.A., Vol. 89, (1992), pp. 6114. http://dx.doi.org/10.1073/pnas.89.13.6114[Crossref]
  • [4] C. Klein, P. Chen, J. H. Arevalo, E. A. Stura, A. Marolewski, M. S. Warren, S. J. Benkovic and I. A. Wilson: “Towards Structure-based Drug Design: Crystal Structure of a Multisubstrate Adduct Complex of Glycinamide Ribonucleotide Transformylase at 1.96 Å Resolution”, J. Mol. Biol., Vol. 249(1), (1995), pp. 153. http://dx.doi.org/10.1006/jmbi.1995.0286[Crossref]
  • [5] M. S. Warren, A. E. Marolewski and S. J. Benkovic: “A Rapid Screen of Active Site Mutants in Glycinamide Ribonucleotide Transformylase”, Biochemistry, Vol. 35, (1996), pp. 8855. http://dx.doi.org/10.1021/bi9528715[Crossref]
  • [6] J. H. Shim and S. J. Benkovic: “Catalytic Mechanism of Escherichia coli Glycinamide Ribonucleotide Transformylase Probed by Site-Directed Mutagenesis and pH-Dependent Studies”, Biochemistry, Vol. 38, (1999), pp. 10024. http://dx.doi.org/10.1021/bi9904609[Crossref]
  • [7] K. S. Gary, M. W. Thomas, J. S. Lawrence, W. D. Charles and J. B. Stephen: “Direct transfer of one-carbon units in the transformylations of de novo purine biosynthesis”, Biochemistry, Vol. 21, (1982), pp. 2870. http://dx.doi.org/10.1021/bi00541a010[Crossref]
  • [8] Q. A. Qiao, Zh. T. Cai, D. C. Feng and Y. S. Jiang: “A quantum chemical study of the water-assisted mechanism in one-carbon unit transfer reaction catalyzed by glycinamide ribonucleotide transformylase”, Biophys. Chem., Vol. 110, (2004), pp. 259. http://dx.doi.org/10.1016/j.bpc.2004.03.003[Crossref]
  • [9] J. Inglese, J. M. Smith and S. J. Benkovic: “Active-Site Mapping and Site-Specific Mutagenesis of Glycinamide Ribonucleotide Transformylase from Escherichia coli”, Biochemistry, Vol. 29, (1990), pp. 6678. http://dx.doi.org/10.1021/bi00480a018[Crossref]
  • [10] Q. A. Qiao, Zh. T. Cai and D. C. Feng: “Quantum study on a new mechanism in onecarbon unit transfer reaction: the water-assisted mechanism”, Chin. J. Chem., Vol. 22(6), (2004), pp. 505. http://dx.doi.org/10.1002/cjoc.20040220602[Crossref]
  • [11] P. L. Nagy, A. Marolewski, S. J. Benkovic and H. Zalkin: “Formyltetrahydrofolate Hydrolase, a Regulatory Enzyme That Functions To Balance Pools of Tetrahydrofolate and One-Carbon Tetrahydrofolate Adducts in Escherichia coli”, J. Bacteriology, Vol. 177(5), (1995), pp. 1292.
  • [12] S. E. Greasley, M. M. Yamashita, H. Cai, S. J. Benkovic, D. L. Boger and I. A. Wilson: “New Insights into Inhibitor Design from the Crystal Structure and NMR Studies of Escherichia coli GAR Transformylase in Complex with β-GAR and 10-Formyl-5, 8, 10-trideazafolic Acid”, Biochemistry, Vol. 38, (1999), pp. 16783. http://dx.doi.org/10.1021/bi991888a
  • [13] Research Collaboratory for Structural Bioinformatics (RCSB), URL: http://www.rcsb.org.
  • [14] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey and M. L. J. Klein: “Comparison of simple potential functions for simulating liquid water”, J. Chem. Phys., Vol. 79, (1983), pp. 926. http://dx.doi.org/10.1063/1.445869[Crossref]
  • [15] J. R. Maple, M.-J. Hwang, K.J. Jalkanen, T. P. Stockfisch and A. T. Hagler: “Derivation of class II force fields: V. Quantum force field for amides, peptides, and related compounds”, J. Comp. Chem., Vol. 19, (1998), pp. 430 and references therein. http://dx.doi.org/10.1002/(SICI)1096-987X(199803)19:4<430::AID-JCC5>3.0.CO;2-T[Crossref]
  • [16] Cerius 2, version 4.6, Accelrys Software Inc. 2001–2005.
  • [17] E. Dyguda, B. Szefczyk and W. A. Sokalski: “The mechanism of phosphoryl transfer reaction and the role of active site residues on the basis of ribokinase-like kinases”, Int. J. Mol. Sci., Vol. 5, (2004), pp. 141. http://dx.doi.org/10.3390/i5040141[Crossref]
  • [18] A. D. Becke: “A new mixing of Hartree-Fock and local density-functional theories”, J. Chem. Phys., Vol. 98, (1993), pp. 1372. http://dx.doi.org/10.1063/1.464304[Crossref]
  • [19] G. A. Petersson and M. A. Al-Laham: “A complete basis set model chemistry. II. Open-shell systems and the total energyes of the first-row atoms”, J. Chem. Phys., Vol. 94, (1991), pp. 6081. http://dx.doi.org/10.1063/1.460447[Crossref]
  • [20] S. L. Mayo, B. D. Olafson and W. A. Goddard: “DREIDING: a generic force field for molecular simulations”, J. Phys. Chem., Vol. 94, (1990), pp. 8897. http://dx.doi.org/10.1021/j100389a010[Crossref]
  • [21] H. Fahmi and P. E. M. Siegbahn: “Catalytic Mechanism of Glyoxalase I: A Theoretical Study”, J. Am. Chem. Soc., Vol. 123(48), (2001), pp. 10280.
  • [22] P. L. Cummins and J. E. Gready: “Energetically Most Likely Substrate and Active-Site Protonation Sites and Pathways in the Catalytic Mechanism of Dihydrofolate Reductase”, J. Am. Chem. Soc., Vol. 123, (2001), pp. 3418. http://dx.doi.org/10.1021/ja0038474[Crossref]
  • [23] Gaussian 03, Revision B03, Gaussian, Inc., Pittsburgh PA, 2003.
  • [24] P. Y. Ayala and H. B. Schlegel: “A combined method for determining reaction paths, minima and transition state geometries”, J. Chem. Phys., Vol. 107, (1997), pp. 375. http://dx.doi.org/10.1063/1.474398[Crossref]
  • [25] M. S. Warren, K. M. Mattia, A. E. Marolewski and S. J. Benkovic: “The Transformylase Enzymes of de novo Purine Biosynthesis”, Pure & Appl. Chem., Vol. 68(11), (1996), pp. 2029.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.