Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2005 | 3 | 4 | 647-657

Article title

New computer program to calculate the symmetry of molecules

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this paper we, present some MATLAB and GAP programs and use them to find the automorphism group of the Euclidean graph of the C80 fullerence with connectivity and geometry of Ih symmetry point group. It is proved that this group has order 120 and is isomorphic to Ih≊Z2×A5, where Z2 is, a cyclic group of order 2 and A5 is the alternating group on five symbols.

Keywords

Publisher

Journal

Year

Volume

3

Issue

4

Pages

647-657

Physical description

Dates

published
1 - 12 - 2005
online
1 - 12 - 2005

Contributors

author
  • Department of Mathematics, Faculty of Science, University of Kashan, Kashan, Iran
  • Department of Mathematics, Faculty of Science, University of Kashan, Kashan, Iran

References

  • [1] M. Randié: “On discerning symmetry properties of graphs.”, Chem. Phys. Letters, Vol. 42, (1976), pp. 283–287. http://dx.doi.org/10.1016/0009-2614(76)80365-X[Crossref]
  • [2] M. Randié: “On the recognition of identical graphs representing molecular topology”, J. Chem. Phys., Vol. 60, (1974), pp. 3920–3928. http://dx.doi.org/10.1063/1.1680839[Crossref]
  • [3] K. Balasubramanian: “Graph-Theoretical Perception of Molecular Symmetry”, Chem. Phys. Letters, Vol. 232, (1995), pp. 415–423. http://dx.doi.org/10.1016/0009-2614(94)01382-6[Crossref]
  • [4] K. Balasubramanian: “The Symmetry Groups of Non-rigid Molecules as Generlized Wreath Products and Their Representations”, J. Chem. Phys., Vol. 72, (1980), pp. 665–677. http://dx.doi.org/10.1063/1.438963[Crossref]
  • [5] K. Balasubramanian: “The Symmetry Groups of Chemical Graphs.”, Intern. J. Quantum Chem., Vol. 21, (1982), pp. 411–418. http://dx.doi.org/10.1002/qua.560210206[Crossref]
  • [6] K. Balasubramanian: “Applications of Combinatorics and Graph Theory to Spectroscopy and Quantum Chemistry”, Chem. Rev., Vol. 85, (1985), pp. 599–618. http://dx.doi.org/10.1021/cr00070a005[Crossref]
  • [7] K. Balasubramanian: “Non-rigid Group Theory, Tunneling Splitting and Nuclear Spin Statistics of Water Pentamer: (H2O)5”, J. Phys. Chem., Vol. 108, (2004), pp. 5527–5536.
  • [8] K. Balasubramanian: “Group Theoretical Analysis of Vibrtional Modes and Rovibronic Levels of extended aromatic C48N12 Azafullerene”, Chem. Phys. Letters, Vol. 391, (2004), pp. 64–68. http://dx.doi.org/10.1016/j.cplett.2004.04.087[Crossref]
  • [9] K. Balasubramanian: “Nuclear Spin Statistics of extended aromatic C48N12 Azafullerene”, Chem. Phys. Letters, Vol. 391, (2004), pp. 69–74. http://dx.doi.org/10.1016/j.cplett.2004.04.086[Crossref]
  • [10] J.-F. Hao and L. Xu: “The study on automorphism group of ESESOC”, Comput. Chem., Vol. 26, (2002), pp. 119–123. http://dx.doi.org/10.1016/S0097-8485(01)00089-4[Crossref]
  • [11] J. Ivanov: “Molecular symmetry perception”, J. Chem. Inf. Comput. Sci., Vol. 44, (2004), pp. 596–600. http://dx.doi.org/10.1021/ci0341868[Crossref]
  • [12] J. Ivanov and G. Schüürmann: “Simple Algorithms for Determining the Molecular Symmetry”, J. Chem. Inf. Comput. Sci., Vol. 39 (1999), pp. 728–737. http://dx.doi.org/10.1021/ci990322q[Crossref]
  • [13] H.C. Longuet-Higgins: “The symmetry groups of non-rigid molecules”, Mol. Phys., Vol. 6, (1963), pp. 445–460. http://dx.doi.org/10.1080/00268976300100501[Crossref]
  • [14] A.R. Ashrafi: “On Non-Rigid Group Theory For Some Molecules”, MATCH Commun. Math. Comput. Chem., Vol. 53 (2005), pp. 161–174.
  • [15] G.A. Moghani, A.R. Ashrafi and M. Hamadanian: “Symmetry properties of tetraammine platinum (II) with C2v and C4v point groups”, J. Zhejiang Univ. SCI., Vol. 6B(3), (2005), pp. 222–226. http://dx.doi.org/10.1631/jzus.2005.B0222[Crossref]
  • [16] A.R. Ashrafi: “On symmetry properties of molecules”, Chem. Phys. Letters, Vol. 406, (2005), pp. 75–80. http://dx.doi.org/10.1016/j.cplett.2005.02.069[Crossref]
  • [17] G.S. Ezra: Symmetry Properties of Molecules, Lecture Notes in Chemistry, Vol. 28, Springer, Berlin-Hidelberg, 1982.
  • [18] W.C. Herndon: “Chemical applications of graph theory and topology”, In: R.B. King (Ed.): Physical and Theoretical Chemistry, Vol. 28, Elsevier, Amsterdam, 1983, pp. 231–242.
  • [19] N. Trinajstié: Chemical Graph Theory, CRC Press, Boca Raton, FL., 1992.
  • [20] M. Schönert, H.U. Besche, Th. Breuer, F. Celler, B. Eick, V. Felsch, A. Hulpke, J. Mnich, W. Nickel, G., Pfeiffer, U. Polis, H. Theißen and A. Niemeyer: GAP, Groups, Algorithms and Programming, Lehrstuhl De für Mathematik, RWTH., Aachen, 1995.
  • [21] A.R. Ashrafi and M. Hamadanian: “The Full Non-Rigid Group Theory for Tetraammine Platinum(II)”, Croatica Chem Acta, Vol. 76, (2003), pp. 299–303.
  • [22] D.J. Higham and N.J. Higham: MATLAB Guide, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_BF02475193
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.