PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2005 | 3 | 4 | 647-657
Article title

New computer program to calculate the symmetry of molecules

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper we, present some MATLAB and GAP programs and use them to find the automorphism group of the Euclidean graph of the C80 fullerence with connectivity and geometry of Ih symmetry point group. It is proved that this group has order 120 and is isomorphic to Ih≊Z2×A5, where Z2 is, a cyclic group of order 2 and A5 is the alternating group on five symbols.
Keywords
Publisher

Journal
Year
Volume
3
Issue
4
Pages
647-657
Physical description
Dates
published
1 - 12 - 2005
online
1 - 12 - 2005
Contributors
author
  • Department of Mathematics, Faculty of Science, University of Kashan, Kashan, Iran, ashrafi@kashanu.ac.ir
  • Department of Mathematics, Faculty of Science, University of Kashan, Kashan, Iran
References
  • [1] M. Randié: “On discerning symmetry properties of graphs.”, Chem. Phys. Letters, Vol. 42, (1976), pp. 283–287. http://dx.doi.org/10.1016/0009-2614(76)80365-X[Crossref]
  • [2] M. Randié: “On the recognition of identical graphs representing molecular topology”, J. Chem. Phys., Vol. 60, (1974), pp. 3920–3928. http://dx.doi.org/10.1063/1.1680839[Crossref]
  • [3] K. Balasubramanian: “Graph-Theoretical Perception of Molecular Symmetry”, Chem. Phys. Letters, Vol. 232, (1995), pp. 415–423. http://dx.doi.org/10.1016/0009-2614(94)01382-6[Crossref]
  • [4] K. Balasubramanian: “The Symmetry Groups of Non-rigid Molecules as Generlized Wreath Products and Their Representations”, J. Chem. Phys., Vol. 72, (1980), pp. 665–677. http://dx.doi.org/10.1063/1.438963[Crossref]
  • [5] K. Balasubramanian: “The Symmetry Groups of Chemical Graphs.”, Intern. J. Quantum Chem., Vol. 21, (1982), pp. 411–418. http://dx.doi.org/10.1002/qua.560210206[Crossref]
  • [6] K. Balasubramanian: “Applications of Combinatorics and Graph Theory to Spectroscopy and Quantum Chemistry”, Chem. Rev., Vol. 85, (1985), pp. 599–618. http://dx.doi.org/10.1021/cr00070a005[Crossref]
  • [7] K. Balasubramanian: “Non-rigid Group Theory, Tunneling Splitting and Nuclear Spin Statistics of Water Pentamer: (H2O)5”, J. Phys. Chem., Vol. 108, (2004), pp. 5527–5536.
  • [8] K. Balasubramanian: “Group Theoretical Analysis of Vibrtional Modes and Rovibronic Levels of extended aromatic C48N12 Azafullerene”, Chem. Phys. Letters, Vol. 391, (2004), pp. 64–68. http://dx.doi.org/10.1016/j.cplett.2004.04.087[Crossref]
  • [9] K. Balasubramanian: “Nuclear Spin Statistics of extended aromatic C48N12 Azafullerene”, Chem. Phys. Letters, Vol. 391, (2004), pp. 69–74. http://dx.doi.org/10.1016/j.cplett.2004.04.086[Crossref]
  • [10] J.-F. Hao and L. Xu: “The study on automorphism group of ESESOC”, Comput. Chem., Vol. 26, (2002), pp. 119–123. http://dx.doi.org/10.1016/S0097-8485(01)00089-4[Crossref]
  • [11] J. Ivanov: “Molecular symmetry perception”, J. Chem. Inf. Comput. Sci., Vol. 44, (2004), pp. 596–600. http://dx.doi.org/10.1021/ci0341868[Crossref]
  • [12] J. Ivanov and G. Schüürmann: “Simple Algorithms for Determining the Molecular Symmetry”, J. Chem. Inf. Comput. Sci., Vol. 39 (1999), pp. 728–737. http://dx.doi.org/10.1021/ci990322q[Crossref]
  • [13] H.C. Longuet-Higgins: “The symmetry groups of non-rigid molecules”, Mol. Phys., Vol. 6, (1963), pp. 445–460. http://dx.doi.org/10.1080/00268976300100501[Crossref]
  • [14] A.R. Ashrafi: “On Non-Rigid Group Theory For Some Molecules”, MATCH Commun. Math. Comput. Chem., Vol. 53 (2005), pp. 161–174.
  • [15] G.A. Moghani, A.R. Ashrafi and M. Hamadanian: “Symmetry properties of tetraammine platinum (II) with C2v and C4v point groups”, J. Zhejiang Univ. SCI., Vol. 6B(3), (2005), pp. 222–226. http://dx.doi.org/10.1631/jzus.2005.B0222[Crossref]
  • [16] A.R. Ashrafi: “On symmetry properties of molecules”, Chem. Phys. Letters, Vol. 406, (2005), pp. 75–80. http://dx.doi.org/10.1016/j.cplett.2005.02.069[Crossref]
  • [17] G.S. Ezra: Symmetry Properties of Molecules, Lecture Notes in Chemistry, Vol. 28, Springer, Berlin-Hidelberg, 1982.
  • [18] W.C. Herndon: “Chemical applications of graph theory and topology”, In: R.B. King (Ed.): Physical and Theoretical Chemistry, Vol. 28, Elsevier, Amsterdam, 1983, pp. 231–242.
  • [19] N. Trinajstié: Chemical Graph Theory, CRC Press, Boca Raton, FL., 1992.
  • [20] M. Schönert, H.U. Besche, Th. Breuer, F. Celler, B. Eick, V. Felsch, A. Hulpke, J. Mnich, W. Nickel, G., Pfeiffer, U. Polis, H. Theißen and A. Niemeyer: GAP, Groups, Algorithms and Programming, Lehrstuhl De für Mathematik, RWTH., Aachen, 1995.
  • [21] A.R. Ashrafi and M. Hamadanian: “The Full Non-Rigid Group Theory for Tetraammine Platinum(II)”, Croatica Chem Acta, Vol. 76, (2003), pp. 299–303.
  • [22] D.J. Higham and N.J. Higham: MATLAB Guide, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_BF02475193
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.