Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2005 | 3 | 4 | 592-604

Article title

A kinetic method for para-nitrophenol determination based on its inhibitory effect on the catalatic reaction of catalase


Title variants

Languages of publication



The inhibitory effect of para-nitrophenol on the catalytic reaction of catalase was investigated. Michaelis-Menten kinetic parameters were determined from Lineweaver-Burk plots obtained in the absence or in the presence of the inhibitor. The inhibitor pattern, revealed by the Lineweaver-Burk plots, suggested a fully mixed inhibition mechanism. Spectrophotometric monitoring of the indicator reaction:
$$H_2 O_2 \xrightarrow{{catalase,para - nitrophenol}}H_2 O + \tfrac{1}{2}O_2 $$
in conjunction with initial rate measurements was employed for the kinetic determination of the inhibitor. Calibration plots of initial rate vs. para-nitrophenol concentration were linear in the concentration range 0.9·10−5–2.5·10−5 mol/L and the detection limit was 3·10−6 mol/L (417 μg/L) para-nitrophenol. Interferences from other phenolic compounds like orto-cresole, meta-and orto-nitrophenol were observed.










Physical description


1 - 12 - 2005
1 - 12 - 2005


  • Facully of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, 400028, Cluj-Napoca, Romania
  • Facully of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, 400028, Cluj-Napoca, Romania
  • Facully of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, 400028, Cluj-Napoca, Romania


  • [1] P. Nicholls and G.R. Schonbaum: “Catalases”, In: P.D. Boyer, H. Lardy and K. Myrback (Eds): The Enzymes, Vol. 8, Academic Press, Orlando FL, 1963, pp. 147–225.
  • [2] B. Chance: “An intermediate compound in the catalase-hydrogen peroxide reaction”, Acta Chem. Scand., Vol. 1, (1947), pp. 236–267.
  • [3] P. George: “Effect of peroxide concentration and other factors on the decomposition of hydrogen peroxide by catalase”, Biochem. J., Vol. 44, (1949), pp. 197–205.
  • [4] P. Jones and A. Suggett: “The catalase-hydrogen peroxide system”, Biochem. J., Vol. 110, (1968), pp. 617–620.
  • [5] B. Chance and D. Herbert: “The enzyme substrate compounds of bacterial catalase and peroxides”, Biochem. J., Vol. 46, (1950), pp. 402–414.
  • [6] O.M. Lardinois, M.M. Mestdagh and P.G. Rouxhet: “Reversible inhibition and irreversible inactivation of catalase in the presence of hydrogen peroxide”, Biochim. Biophys. Acta, Vol. 1295, (1996), pp. 222–238.
  • [7] A. Ivancich, H.M. Jouve, B. Sartor and J. Gaillard: “EPR investigation of compound 1 in Proteus mirabilis and bovine liver catalases: formation of porphyrin and tyrosyl radical intermediates”, Biochemistry, Vol. 36, (1997), pp. 9356–9364. http://dx.doi.org/10.1021/bi970886s[Crossref]
  • [8] K. Kikuchi, Y. Kawamura-Konishi and H. Suzuki: “The reaction of Aspergillus niger catalase with methyl hydroperoxide”, Arch. Biochem. Biophys., Vol. 296, (1992), pp. 88–94. http://dx.doi.org/10.1016/0003-9861(92)90548-B[Crossref]
  • [9] M.L. Kremer: “Reaction of catalase with ethylhydrogen peroxide”, J. Chem. Soc., Faraday Trans. 1, Vol. 81, (1985), pp. 91–104. http://dx.doi.org/10.1039/f19858100091[Crossref]
  • [10] H. Sayo and M. Hosokawa: “Kinetics of the organic hydroperoxide-supported oxidation of aminopyrine catalyzed by catalase”, Chem. Pharm. Bull., Vol. 30, (1982), pp. 2161–2168.
  • [11] N. Oshino, R. Oshino and B. Chance: “The characteristics of the peroxidatic reaction of catalase in ethanol oxidation”, Biochem. J., Vol. 131, (1973), pp. 555–567.
  • [12] M.L. Kremer: “Nonstationary inhibition of enzyme action. The cyanide inhibition of catalase”, J. Phys. Chem., Vol. 85, (1981), pp. 835–839. http://dx.doi.org/10.1021/j150607a021[Crossref]
  • [13] B. Chance: “The reaction of catalase and cyanide”, J. Biol. Chem., Vol. 179, (1949), pp. 1299–1309.
  • [14] Y. Ogura, Y. Tonomura, S. Hino and H. Tamiya: “Reaction between catalase and various inhibitory substances”, J. Biochem. (Japan), Vol. 37, (1950), pp. 153–177.
  • [15] E. Margoliash and A. Novogrodsky: “Inhibition of catalase by 3-amino-1 triazole”, Biochem. J., Vol. 68, (1958), pp. 468–475.
  • [16] C. Muresanu and L. Copolovici: “Kinetic method for acetylsalicylic acid determination based on its inhibitory effect upon the catalytic decomposition of H2O2”, Anal. Bioanal. Chem., Vol. 378, (2004), pp. 1868–1872. http://dx.doi.org/10.1007/s00216-003-2470-4[Crossref]
  • [17] B. Quemerais, C. Lemieux and K.R. Lum: “Distribution and fate of chlorophenols in St. Lawrence River basin, Canada”, Chemosphere, Vol. 28, (1994), pp. 1943–1960. http://dx.doi.org/10.1016/0045-6535(94)90145-7[Crossref]
  • [18] J. Jensen: “Chlorophenols in the terrestrial environment”, Rev. Environ. Contam. Toxicol., Vol. 146, (1996), pp. 25–51.
  • [19] A. Oubińa, B. Ballesteros, R. Galve, D. Barcelo and M-P. Marco: “Development and optimization of an indirect enzyme-linked immunosorbent assay for 4-nitrophenol. Application to the analysis of certified water samples”, Anal. Chem. Acta, Vol. 387, (1999), pp. 255–266. http://dx.doi.org/10.1016/S0003-2670(98)00775-2[Crossref]
  • [20] W. Frenzel, J. Oleksy-Frenzel and J. Moeller: “Spectrophotometric determination of phenolic compounds by flow-injection analysis”, Anal. Chem., Vol. 261, (1992), pp. 253–259.
  • [21] M. Toral, P. Richter, M. Cavieres and W. Gonzales: “Simultaneous determination of o-and p-nitrophenol by first derivative spectrophotometry”, Environ. Monit. Assess., Vol. 54, (1999), pp. 191–203. http://dx.doi.org/10.1023/A:1005977421221[Crossref]
  • [22] A. Cladera, M. Miro, J. Estela and V. Cerda: “Multicomponent sequential injection analysis determination of nitro-phenols in waters by on-line liquid-liquid extraction and preconcentration”, Anal. Chem. Acta, Vol. 421, (2000), pp. 155–166. http://dx.doi.org/10.1016/S0003-2670(00)01035-7[Crossref]
  • [23] T.N. Shekhovtsova, A.L. Lyalyulin, E.I. Kondrateva, I.G. Gazaryan and I.F. Dolmanova: “The use of peroxidases of different origins in the determination of phenols”, Zh. Anal. Khim., Vol. 49 (1994), pp. 1317–1323.
  • [24] Q. Fulian and R.G. Compton: “Laser activated voltammetry: application to the determination of phenol in aqueous solution at a glassy carbon electrode”, Analyst, Vol. 125, (2000), pp. 531–534. http://dx.doi.org/10.1039/a908826a[Crossref]
  • [25] M.J. Christophersen and T.J. Cardwell: “Determination of total phenols in waters and wastewaters using flow injection with electrochemical detection, an alternative to the standard colorimetric procedure”, Anal. Chim. Acta, Vol. 232, (1996), pp. 39–46. http://dx.doi.org/10.1016/0003-2670(95)00614-1[Crossref]
  • [26] C. Zhao, J.-F Song and J.-C. Zhang: “Determination of total phenols in environmental waste water by flow-injection analysis with a biamperometric detector”, Anal. Bioanal. Chem. Vol. 374, (2002), pp. 498–504. http://dx.doi.org/10.1007/s00216-002-1451-3[Crossref]
  • [27] A. Peńalver, E. Pocurull, F. Borull and R.M. Marcé: “Solid-phase microextraction coupled to high-performance liquid chromatography to determine phenolic compounds in water samples”, J. Chromatogr. A, Vol. 953, (2002), pp. 79–87. http://dx.doi.org/10.1016/S0021-9673(02)00113-9[Crossref]
  • [28] E. Pocurull, G. Sánchez, F. Borull and R.M. Marcé: “Automated on-line trace enrichment and determination of phenolic compounds in environmental waters by high-performance liquid chromatography”, J. Chromatogr. A, Vol. 696, (1995), pp. 31–39. http://dx.doi.org/10.1016/0021-9673(94)01202-P[Crossref]
  • [29] P. Barták, P. Frnková and L. Čáp: “Determination of phenols using simultaneous steam distillation-extraction”, J. Chromatogr. A, Vol. 867, (2000), pp. 281–287. http://dx.doi.org/10.1016/S0021-9673(99)01116-4[Crossref]
  • [30] S. Morales and R. Cela: “Highly selective and efficient determination of US Environmental Protection Agency priority phenols employing solid-phase extraction and non-aqueous capillary electrophoresis”, J. Chromatogr. A, Vol. 896, (2000), pp. 95–104. http://dx.doi.org/10.1016/S0021-9673(00)00581-1[Crossref]
  • [31] M. La Farré, A. Oubińa, M.P. Marco, A. Ginebreda L. Tirapu and D. Barceló: “Evaluation of 4-nitrophenol ELISA Kit for assesing the origin of organic pollution in wastewater treatment works”, Environ. Sci. Technol. Vol. 33, (1999), pp. 3898–3904. http://dx.doi.org/10.1021/es990402a[Crossref]
  • [32] P. Jones and A. Suggett: “The catalase-hydrogen peroxide system”, Biochem. J., Vol. 108, (1968), pp. 833–838.
  • [33] D.P. Nelson and L.A. Kiesow: “Enthalpy of decomposition of hydrogen peroxide by catalase at 25°C”, Anal. Biochem., Vol. 49, (1972), pp. 474–478. http://dx.doi.org/10.1016/0003-2697(72)90451-4[Crossref]
  • [34] P. Jones, W.F.K. Wynne-Jones: “Mechanism of catalase action”, Trans. Faraday Soc., Vol. 58, (1962), pp. 1148–1158. http://dx.doi.org/10.1039/tf9625801148[Crossref]
  • [35] M.K. Kremer: “Mechanism of catalase action”, J. Chem. Soc., Faraday Trans. 1, Vol. 79, (1983), pp. 2125–2131. http://dx.doi.org/10.1039/f19837902125[Crossref]
  • [36] R.K. Bonnichsen, B. Chance and H. Theorell: “Catalase activity”, Acta Chem. Scand., Vol. 1, (1947), pp. 685–709. http://dx.doi.org/10.3891/acta.chem.scand.01-0685[Crossref]
  • [37] R.F. Beers and I.W. Sizer: “Spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase”, J. Biol. Chem. Vol. 195, (1952), pp. 133–140.
  • [38] R.A. Copeland: Enzymes: A practical introduction to structure, mechanism and data analysis, Wiley-VCH, INC. Ed., 2000.
  • [39] H. Lineweaver and J. Burk: “Determination of enzyme dissociation constants”, J. Am. Chem. Soc., Vol. 56, (1934), pp. 658–666. http://dx.doi.org/10.1021/ja01318a036[Crossref]
  • [40] G.S. Eadie: “The inhibition of cholinesterase by physostigmine and prostigmine”, J. Biol. Chem., Vol. 146 (1942), pp. 85–93.
  • [41] B.H.J. Hofstee: “Noninverted versus inverted plots in enzyme kinetics”, Nature, Vol. 184, (1959), pp. 1296–1298.
  • [42] C.S. Hanes: “Studies on plant amylases. I. Effect of starch concentration upon the velocity of hydrolysis by the amylases of germinated barley”, Biochem. J., Vol. 26, (1932), pp. 1406–1421.
  • [43] R. Eisenthal and A. Cornish-Bowden: “The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters”, Biochem. J., Vol. 139, (1974), pp. 715–721.
  • [44] “Symbolism and Terminology in Enzyme Kinetics”, Nomenclature Committee of the International Union of Biochemistry, (1981); Reprinted in: Eur. J. Biochem., Vol. 128, (1982), pp. 281–291.
  • [45] J.L. Gelpi, J.J. Aviles, M. Busquets, S. Imperial, A. Mazo, A. Cortes, D.J. Halsall and J.J. Holbrook: “A theoretical approach to the discrimination and characterization of the different classes of reversible inhibitors”, J. Chem. Educ., Vol. 70, (1993), pp. 805–816. http://dx.doi.org/10.1021/ed070p805[Crossref]
  • [46] R. Kellner, J.M. Mermet, M. Otto and H.M. Widmer: Analytical Chemistry, Wiley-VCH, 1998.
  • [47] Analytical Method Committee: “Recommendations for the definition, estimation and use of the detection limit”, Analyst Vol. 112, (1987), pp. 199–204. http://dx.doi.org/10.1039/an9871200199[Crossref]
  • [48] M.B. Ettinger, C.C. Ruchhof and R.J. Lishka: “Sensitive 4-aminoantipyrine method for phenolic compounds”, Anal. Chem. Vol. 23, (1951), pp. 1783–1788. http://dx.doi.org/10.1021/ac60060a019

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.