PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 1 | 1 |
Article title

Analytic solutions of the Helmholtz and Laplace
equations by using local fractional derivative
operators

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper we develop analytical solutions for
the Helmholtz and Laplace equations involving local fractional
derivative operators. We implement the local fractional
decomposition method (LFDM) for finding the exact
solutions. The iteration procedure is based upon the
local fractional derivative sense. The numerical results,
whichwe present in this paper, show that the methodology
used provides an efficient and simple tool for solving fractal
phenomena arising in mathematical physics and engineering.
Several illustrative examples are also provided.
Publisher

Year
Volume
1
Issue
1
Physical description
Dates
online
11 - 11 - 2015
accepted
29 - 9 - 2015
received
8 - 8 - 2015
Contributors
author
  • Department of Mathematics, Faculty of Sciences,
    HITEC University, Taxila, Pakistan
  • Department of Mathematics, Faculty of Sciences,
    HITEC University, Taxila, Pakistan
  • Department of Mathematics and Statistics, University
    of Victoria, Victoria, British Columbia V8W 3R4, Canada and
    China Medical University, Taichung 40402, Taiwan, Republic of
    China
author
  • China University of
    Mining and Technology, Department of Mathematics and Mechanics,
    Xuzhou, Jiangsu 221008, People’s Republic of China
References
  • [1] K.M. Kolwankar, A.D. Gangal, Phys. Rev. Lett. 80, 214 (1998).
  • [2] A. Carpinteri, B. Chiaia, P. Cornetti, Comput. Method. Appl.Mech. Engrg. 191, 3 (2001).
  • [3] F.B. Adda, J. Cresson, J. Math. Anal. Appl. 263, 721 (2001).
  • [4] A. Babakhani, V.G. Daftardar, J. Math. Anal. Appl. 270, 66(2002).
  • [5] G. Jumarie, Appl. Math. Lett. 22, 378 (2009).[Crossref]
  • [6] W. Chen, H. Sun, X. Zhang, D. Korosak, Comput. Math. Appl. 59,1754 (2010).
  • [7] X.-J. Yang, Local Fractional Functional Analysis and its Applications(Asian Academic Publisher, Hong Kong, PRC, 2011).
  • [8] X.-J. Yang, Advanced Local Fractional Calculus and Its Applications(World Science Publisher, New York, USA, 2012).
  • [9] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and applicationsof Fractional Differential Equations (Elsevier/North-Holloand Science Publishers, Amsterdam, The Netherlands,2006).
  • [10] X.-J. Yang, D. Baleanu, Therm. Sci. 17, 625 (2013).[Crossref]
  • [11] X.-J. Yang, H.M. Srivastava, J.-H. He, D. Baleanu, Phys. Lett. A.377, 1696 (2013).
  • [12] J. Ahmad, S.T. Mohyud-Din, Proc. Pakistan Acad. Sci. 52, 71(2015).
  • [13] Y.-J. Yang, D. Baleanu, X.J. Yang, Abstr. Appl. Anal. 2013, Art. ID202650 (2013).
  • [14] A.K. Golmankhaneh, V. Fazlollahi, D. Baleanu, Rom. Rep. Phys.65, 93 (2013).
  • [15] Y.-J. Hao, H.M. Srivastava, H. Jafari, X.-J. Yang, Adv. Math. Phys.2013, 754248 (2013).
  • [16] J.-H. He, Internat. J. Non-Linear Mech. 34, 708 (1999).
  • [17] Y. Khan, S.T. Mohyud-Din, Internat. J. Nonlinear Sci. Numer. Simulat.12, 1103, (2010).
  • [18] J. Hristov, Therm. Sci. 14, 291 (2010).[Crossref]
  • [19] J. Ahmad, S.T. Mohyud-Din, Plus One. 9, Article ID e109127(2014).[Crossref]
  • [20] H. Jafari, S. Seifi, Commun. Nonlinear Sci. 14, 2006 (2009).[Crossref]
  • [21] S. Zhang, H.-Q. Zhang, Phys. Lett. A, 375, 1069 (2011).
  • [22] Y. Khan, N. Faraz, A. Yildirim, Q.-B.Wu, Comput.Math. Appl. 62,2273 (2011).[Crossref]
  • [23] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional calculusmodels and numerical methods, (World Scientific, Boston,USA, 2012).
  • [24] C. Li, Y. Wang, Comput. Math. Appl. 57, 1672 (2009).[Crossref]
  • [25] H. Jafari, V.G. Daftardar, J. Comput. Appl.Math. 196, 644 (2006).
  • [26] S. Momani, Z. Odibat, Appl. Math. Comput. 177, 488 (2006).
  • [27] S.S. Ray, R.K. Bera, Appl. Math. Comput. 174, 329 (2006).
  • [28] Q. Wang, Appl. Math. Comput. 182, 1048 (2006).
  • [29] H. Jafari, V.G. Daftardar, Appl. Math. Comput. 180, 488 (2006).
  • [30] M. Safari, D.D. Ganji, M. Moslemi, Comput.Math. Appl. 58, 2091(2009).[Crossref]
  • [31] M. El-Shahed, J. Fract. Calc. 24, 23 (2003).
  • [32] X.-J. Yang, D. Baleanu, W.-P. Zhong, Proc. Roman. Acad. Ser. A,14, 127 (2013).
  • [33] X.-J. Yang, D. Baleanu, M. P. Lazareviæ, M. S. Cajiæ, Therm. Sci.2013, DOI: 10.2298/TSCI130717103Y, (2013).[Crossref]
  • [34] A.-M. Yang, Y.-Z. Zhang, Y. Long, Therm. Sci. 17, 707 (2013).[Crossref]
  • [35] C.-F. Liu, S.-S. Kong, S.-J. Yuan, Therm. Sci. 17, 715 (2013).[Crossref]
  • [36] J. Ahmad, S.T. Mohyud-Din, Life Sci. J. 10, 210 (2013).
  • [37] X.-J. Yang, Y.-D. Zhang, Adv. Inform. Tech. Managem. 1, 158(2012).
  • [38] X.-J. Yang, Progr. Nonlinear Sci. 4, 1 (2011).
  • [39] M. Liao, X.-J. Yang, Q. Yan, A New viewpoint to Fourier analysisin fractal space (Advances in Applied mathematics and ApproximationTheory, Springer, 397, 2013).
  • [40] A.-M. Yang, Z.-S. Chen, H.M. Srivastava, X.-J. Yang, Abstr. Appl.Anal. 2013, Article ID 259125 (2013).
  • [41] Y.-J. Yang, D. Baleanu, X.-J. Yang, Abstr. Appl. Anal. 2013, ArticleID 202650 (2013).
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_wwfaa-2015-0003
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.