Preferences help
enabled [disable] Abstract
Number of results
2015 | 70 | 1 | 1-13
Article title

Experimental approach towards the water contact angle value on the biomaterial alloy Ti6Al4V

Title variants
Languages of publication
In the biomedical field, water contact angle is a useful gauge to follow how a biomaterial surface would interact with the surrounding water-like physiological environment. Ti6Al4V alloy is widely used in orthopedic applications. Nevertheless, the values of its water contact angle reported in the literature show a large dispersion, from 40° up 80°. However, in addition to the expected dependence of the surface wettability on preliminary treatments, the values of the water contact angle on the pristine Ti6Al4V alloy suffers from an important variability and lack of reproducibility. The present research pays attention to this difficulty and proposes a simple experimental procedure to ensure adequate contact angle reproducibility. Controlled passivation growth in mild underwater conditions of freshly polished disks, followed by ultrasonic washing, avoiding the rubbing of the surface, gives average water contact angles of 80° with very low standard deviations also among samples from the same batch.
Physical description
1 - 6 - 2015
24 - 7 - 2015
  • [1] B. Jańczuk, J. M. Bruque, M. L. Gonzalez-Martin, J. Moreno del Pozo, Determination of components of cassiterite surface free energy from contact angle measurements, J. Colloids Interface Sci., 161, 209, (1993).
  • [2] B. Jańczuk, M. L. Gonzalez-Martin, J. M. Bruque, The influence of sodium dodecyl sulfate on the surface free energy of cassiterite, J. Colloids Interface Sci.,170, 383, (1995).
  • [3] A. Zdziennicka, B. Jańczuk, W. Wojcik, Wettability of polytetrafluoroethylene by aqueous solutions of two anionic surfactant mixtures, J. Colloids Interface Sci., 268, 200, (2003)
  • [4] A. Zdziennicka, B. Jańczuk, Wettability of quartz in presence of nonionic surfactants and short chain alcohols mixtures, J. Colloids Interface Sci., 343, 594, (2010).[WoS]
  • [5] K. Szymczyk, M. L. Gonzalez-Martin, J. M. Bruque, B. Jańczuk, Effect of two hydrocarbon and one fluorocarbon surfactant mixtures on the surface tension and wettability of polymers, J. Colloids Interface Sci., 417, 180, (2014).[WoS]
  • [6] S. A. Shabalovskaya, D. Siegismund, E. Heurich, M. Rettenmayr, Evaluation of wettability and surface energy of native Nitinol surfaces in relation to hemocompatibility, Mat. Sci. Eng. C, 33, 127, (2013).[WoS]
  • [7] A. M. Gallardo-Moreno, M. A. Pacha-Olivenza, L. Saldana, C. Perez-Giraldo, J. M. Bruque, N. Vilaboa, M. L. Gonzalez- Martin, In vitro biocompatibility and bacterial adhesion of physicchemically modified Ti6Al4V surface by means of UV irradiation, Acta Biomater., 5, 181, (2009).[WoS][Crossref]
  • [8] A. M. Gallardo-Moreno, M. Gonzalez-Martin, J. M. Bruque, C. Perez-Giraldo, The adhesion strength of Candida parapsilosis to glass and silicone as a function of hydrophobicity, roughness and cell morphology, Colloids Surfaces A, 249, 99, (2004).
  • [9] D. M. Brunette, P. Tengwall, M. Textor, P. Thomsen, Titanium in Medicine: Springer-Verlag, London, (2001).
  • [10] P. J. Vezeau, G. F. Koorbusch, R. A. Draughn, J. C. Keller, Effects of multiple sterilization on surface characteristics and in vitro biologic responses to titanium, J. Oral Maxillofac. Surg., 54, 738, (1996).
  • [11] C. M. Stanford, J. C. Keller, M. Solursh, Bone cell expression on titanium surfaces is altered by sterilization treatments, Dent. Res., 73, 1061, (1994).
  • [12] J. H. Park, R. Olivares-Navarrete, R. E. Baier, A. E. Meyer, R. Tannenbaum, B. D. Boyan, Z. Schwartz, Effect of cleaning and sterilization on titanium implant surface properties and cellular response, Acta Biomater., 8, 1966, (2012).[WoS][Crossref]
  • [13] S. Roessler, R. Zimmermann, D. Scharnweber, C. Werner, H. Worch, Characterization of oxide layers of Ti6Al4V by streaming potential and streaming current measurements, Colloid Surfaces B, 26, 387, (2002). 12 Margarita Hierro-Oliva et al.
  • [14] M. A. Pacha-Olivenza, A. M. Gallardo-Moreno, A. Mendez-Vilas, J. M. Bruque, J. L. Gonzalez-Carrasco, M. L. Gonzalez-Martin, Effect of UV irradiation on the surface Gibbs energy of Ti6Al4V and thermally oxidized Ti6Al4V, J. Colloid Interf. Sci., 320, 117, (2008).[WoS]
  • [15] D. E. MacDonald, B. E. Rapuano, N. Deo, M. Stranick, P. Somasundaran, A. L. Boskey, Thermal and chemical modifycation of titanium-aluminum-vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment, Biomaterials, 25, 3135, (2004).[Crossref]
  • [16] R. A. Gittens, R. Olivares-Navarrete, T. McLachlan, Y. Cai, S. L. Hyzy, J. M. Schneider, Z. Schwartz, K. H. Sandhage, B. D. Boyan, Differential responses of osteoblast lineage cells to nanotopographically-modified, microroughened titanium-aluminum- vanadium alloy surfaces, Biomaterials, 33, 8986, (2012).[WoS]
  • [17] A. M. Gallardo-Moreno, M. Multigner, M. A. Pacha-Olivenza, M. Lieblich, J. A. Jimenez, J. L. Gonzalez-Carrasco, M. L. Gonzalez- Martin, Influence of slight microstructural gradients on the surface properties of Ti6Al4V irradiated by UV, Appl. Surf. Sci., 255, 9105, (2009).[WoS]
  • [18] N. Sakai, R. Wang, A. Fujishima, T. Watanabe, K. Hashimoto, Effect of Ultrasonic Treatment on Highly Hydrophilic TiO2 Surfaces, Langmuir, 14, 5918, (1998).
  • [19] P. A. Lilley, P. S. Walker, G. W. Blunn, in: Transaction of the 4th Word Biomaterials Congress, Berlin, 227, (1992).
  • [20] C. Sitting, M. Textor, N. D. Spencer, M. Wieland, P. H. Vallotton, Surface characterization of implant materials c.p. Ti, Ti-6Al-7Nb and Ti-6Al-4V with different pretreatments, J. Mater. Sci. Mater. Med., 10, 35, (1999).
  • [21] S. Faghhi, A. P. Zhilyaev, J. A. Szpunar, F. Azari, H. Vali, M. Tabrizian, Nanostructuring of a Titanium Material by High- Pressure Torsion Improves Pre-Osteoblast Attachment, Adv. Mater., 19, 1069, (2007).
  • [22] C. Yao, J. L. Qazi, H. J. Rack, E. B. Slamovich, T. J. Webster, Improved bone cell adhesion on ultrafine grained titanium and Ti6Al4V. Ceramic Nanomaterials and Nanotecnology III, 106th Acers Transactions, 159, (2004).
  • [23] J. N. Israelachvili, Intermolecular and Surface Forces, 2nd ed.: Academic Press, London, (1991). Experimental approach towards the water contact angle … 13
  • [24] H. Hahl, F. Evers, S. Grandthyll, M. Paulus, C. Sternemann, P. Loskill, M. Lessel, A.K. Husecken, T. Brenner, M. Tolan, K. Jacobs, Subsurface Influence on the Structure of Protein Adsorbates as Revealed by in Situ X-ray Reflectivity, Langmuir, 28, 7747, (2012).[WoS][Crossref]
  • [25] G. Welsh, R. Boyer, E. W. Collins. Material properties, Handbook: Titaniium alloys: ASM, Ohio, (1994).
  • [26] F. Variola, J.-H. Yi, L. Richert, J. D. Wuest, F. Rosei, A. Nanci, Tailoring the surface properties of Ti6Al4V by controlled chemical oxidation, Biomaterials, 29, 1285, (2008).[WoS][Crossref]
  • [27] D. E. MacDonald, B. E. Rapuano, H. C. Schniepp, Surface oxide net charge of a titanium alloy: Comparison between effects of treatment with heat or radiofrequency plasma glow discharge, Colloids Surfaces B, 82, 173, (2011).
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.