Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2015 | 2 | 1 |

Article title

Aptamer guided delivery of nucleic acid-based


Title variants

Languages of publication



Targeted delivery of bioactive compounds is a
key part of successful therapies. In this context, nucleic
acid and protein-based aptamers have been shown to
bind therapeutically relevant targets including receptors.
In the last decade, nucleic acid-based therapeutics
coupled to aptamers have emerged as a viable strategy for
cell specific delivery. Additionally, recent developments
in nucleic acid nanotechnology offer an abundance of
possibilities to rationally design aptamer targeted RNA
or DNA nanoparticles involving combinatorial use of
various intrinsic functionalities. Although a host of issues
including stability, safety and intracellular trafficking
remain to be addressed, aptamers as simple functional
chimeras or as parts of multifunctional self-assembled
RNA/DNA nanostructures hold great potential for clinical







Physical description


15 - 7 - 2015
21 - 1 - 2016
3 - 10 - 2015



  • [1] Keefe A.D., Pai S. & Ellington A., Aptamers as therapeutics, Nat.Rev. Drug Discov., 2010, 9, 537-550.[Crossref]
  • [2] Sundaram P., Kurniawan H., Byrne M.E. & Wower J., TherapeuticRNA aptamers in clinical trials, Eur. J. Pharm. Sci., 2013, 48,259-271.[Crossref]
  • [3] Mathew A., Maekawa T. & Sakthikumar D., Aptamers intargeted nanotherapy, Curr. Top. Med. Chem., 15, 2015,1102-1114.
  • [4] Tuerk C. & Gold L., Systematic evolution of ligands byexponential enrichment: RNA ligands to bacteriophage T4 DNApolymerase, Science, 19902, 49, 505-510.
  • [5] Ellington A.D. & Szostak J.W., In vitro selection of RNAmolecules that bind specific ligands, Nature, 1990, 346,818-822.
  • [6] Zhou J., Bobbin M.L., Burnett J.C. & Rossi J.J., Current progressof RNA aptamer-based therapeutics, Front. Genet., 2012, 3,234.[Crossref]
  • [7] McNamara J.O., et al., Cell type-specific delivery of siRNAswith aptamer-siRNA chimeras, Nat. Biotechnol., 2006, 24,1005-1015.[Crossref]
  • [8] Thiel K.W. & Giangrande P.H., Therapeutic applications of DNAand RNA aptamers, Oligonucleotides, 2009, 19, 209–222.[Crossref]
  • [9] Dassie J.P. & Giangrande P.H., Current progress on aptamertargetedoligonucleotide therapeutics, Ther. Deliv., 2013, 4,1527-1546.[Crossref]
  • [10] Andersen E.S., Prediction and design of DNA and RNAstructures, New Biotechnol., 2010, 27, 184-193.[Crossref]
  • [11] Afonin K.A., et al., Design and self-assembly of siRNA-functionalizedRNA nanoparticles for use in automated nanomedicine,Nat. Protoc., 2011, 6, 2022-2034.[Crossref]
  • [12] Shu Y., et al., Fabrication of 14 different RNA nanoparticlesfor specific tumor targeting without accumulation in normalorgans, RNA N. Y. N, 2013, 19, 767-777.[Crossref]
  • [13] Afonin K.A., et al., In silico design and enzymatic synthesisof functional RNA nanoparticles, Acc. Chem. Res., 2014, 47,1731-1741.[Crossref]
  • [14] Grabow W.W. & Jaeger L., RNA self-assembly and RNAnanotechnology, Acc. Chem. Res., 2014, 47, 1871-1880.[Crossref]
  • [15] Dao B.N., et al., Triggering RNAi with multifunctional RNAnanoparticles and their delivery, DNA RNA Nanotechnol., 2015,1, DOI: 10.1515/rnan-2015-0001[Crossref]
  • [16] Esposito C.L., Catuogno S. & de Franciscis V., Aptamermediatedselective delivery of short RNA therapeutics in cancercells, J. RNAi Gene Silencing, 2014, 10, 500-506.
  • [17] Adams B.D., Kasinski A.L. & Slack F.J., Aberrant regulation andfunction of microRNAs in cancer, Curr. Biol., 2014, 24, 762-776.[Crossref]
  • [18] Stenvang J., Petri A., Lindow M., Obad S. & Kauppinen S.,Inhibition of microRNA function by antimiR oligonucleotides,Silence, 2012, 3, 1.[Crossref]
  • [19] Pofahl M., Wengel J. & Mayer G., Multifunctional nucleic acidsfor tumor cell treatment, Nucleic Acid Ther., 2014, 24, 171-177.
  • [20] Catuogno S., Rienzo A., Di Vito A., Esposito C.L. & de FranciscisV., Selective delivery of therapeutic single strand antimiRsby aptamer-based conjugates, J. Control. Release, 2015, 210,147-159.[Crossref]
  • [21] Rohde J.H., Weigand J.E., Suess B. & Dimmeler S., A UniversalAptamer Chimera for the Delivery of Functional microRNA-126,Nucleic Acid Ther., 2015, 25, 141-151.
  • [22] Zhou J., et al., Dual functional BAFF receptor aptamers inhibitligand-induced proliferation and deliver siRNAs to NHL cells,Nucleic Acids Res., 2013, 41, 4266-4283.[Crossref]
  • [23] Dey A.K., et al., An aptamer that neutralizes R5 strains ofhuman immunodeficiency virus type 1 blocks gp120-CCR5interaction, J. Virol., 79, 2005, 13806-13810.
  • [24] Khati M., et al., Neutralization of infectivity of diverse R5clinical isolates of human immunodeficiency virus type1 by gp120-binding 2’F-RNA aptamers, J. Virol., 2003, 77,12692-12698.[Crossref]
  • [25] Zhou J., et al., Functional in vivo delivery of multiplexedanti-HIV-1 siRNAs via a chemically synthesized aptamer with asticky bridge, Mol. Ther., 2013, 21, 192-200.
  • [26] Zhou J., et al., Cell-specific RNA aptamer against human CCR5specifically targets HIV-1 susceptible cells and inhibits HIV-1infectivity, Chem. Biol., 2015, 22, 379-390.
  • [27] Wheeler L.A., et al., Durable knockdown and protectionfrom HIV transmission in humanized mice treated withgel-formulated CD4 aptamer-siRNA chimeras, Mol. Ther., 2013,21, 1378-1389.[Crossref]
  • [28] Yoo H., Jung H., Kim S.A. & Mok H., Multivalent comb-typeaptamer-siRNA conjugates for efficient and selectiveintracellular delivery, Chem. Commun., 2014, 50, 6765-6767.[Crossref]
  • [29] Baum D.A. & Silverman S.K., Deoxyribozymes: useful DNAcatalysts in vitro and in vivo, Cell. Mol. Life Sci., 2008, 65,2156-2174.[Crossref]
  • [30] Subramanian N., et al., Chimeric nucleolin aptamer withsurvivin DNAzyme for cancer cell targeted delivery, Chem.Commun., 2015, 51, 6940-6943.[Crossref]
  • [31] Singh N., Krishnakumar S., Kanwar R.K., Cheung C.H.A. &Kanwar J.R., Clinical aspects for survivin: a crucial molecule fortargeting drug-resistant cancers, Drug Discov. Today, 2015, 20,578-587.[Crossref]
  • [32] Bauman J., Jearawiriyapaisarn N. & Kole R., Therapeuticpotential of splice-switching oligonucleotides, Oligonucleotides,2009, 19, 1-13.[Crossref]
  • [33] Kotula J.W., et al., Aptamer-mediated delivery of spliceswitchingoligonucleotides to the nuclei of cancer cells, NucleicAcid Ther., 2012, 22, 187-195.
  • [34] Liu X., Yan H., Liu Y. & Chang Y., Targeted cell-cell interactionsby DNA nanoscaffold-templated multivalent bispecificaptamers, Small, 2011, 7, 1673-1682.[Crossref]
  • [35] Schrand B., et al., Targeting 4-1BB costimulation to the tumorstroma with bispecific aptamer conjugates enhances thetherapeutic index of tumor immunotherapy, Cancer Immunol.Res., 2014, 2, 867-877.[Crossref]
  • [36] Gambari R., Recent patents on therapeutic applications of thetranscription factor decoy approach, Expert Opin. Ther. Pat.,2011, 21, 1755-1771.[Crossref]
  • [37] Porciani D., et al., Aptamer-Mediated Codelivery of Doxorubicinand NF-κB Decoy Enhances Chemosensitivity of PancreaticTumor Cells, Mol. Ther. Nucleic Acids, 2015, 4, e235.
  • [38] Shukla G.C., et al., A boost for the emerging field of RNAnanotechnology, ACS Nano, 2011, 5, 3405-3418.[Crossref]
  • [39] Chang, M., Yang, C.S. & Huang, D.M., Aptamer-conjugated DNAicosahedral nanoparticles as a carrier of doxorubicin for cancertherapy, ACS Nano, 2011, 5, 6156-6163.[Crossref]
  • [40] Haque F., et al., Ultrastable synergistic tetravalent RNAnanoparticles for targeting to cancers, Nano Today, 2012, 7,245-257.[Crossref]
  • [41] Afonin K.A., et al., Multifunctional RNA nanoparticles, NanoLett., 2014, 14, 5662-5671.[Crossref]
  • [42] Guo P., Zhang C., Chen C., Garver K. & Trottier M., Inter-RNAinteraction of phage phi29 pRNA to form a hexameric complexfor viral DNA transportation, Mol. Cell, 1998, 2, 149-155.[Crossref]
  • [43] Guo S., Tschammer N., Mohammed S. & Guo P., Specificdelivery of therapeutic RNAs to cancer cells via the dimerizationmechanism of phi29 motor pRNA, Hum. Gene Ther., 2005, 16,1097-1109.[Crossref]
  • [44] Shu Y., et al., Fabrication of 14 different RNA nanoparticlesfor specific tumor targeting without accumulation in normalorgans, RNA, 2013, 19, 767-777.[Crossref]
  • [45] Li N., et al., Technical and biological issues relevant to celltyping with aptamers, J. Proteome Res., 2009, 8, 2438-2448.[Crossref]
  • [46] Keum J.W., Ahn J.H. & Bermudez H., Design, assembly, andactivity of antisense DNA nanostructures, Small, 2011, 7,3529-3535.[Crossref]
  • [47] Lee H., et al., Molecularly self-assembled nucleic acidnanoparticles for targeted in vivo siRNA delivery, Nat.Nanotechnol., 2012, 7, 389-393.[Crossref]
  • [48] Zhu G., et al., Self-assembled, aptamer-tethered DNAnanotrains for targeted transport of molecular drugs incancer theranostics, Proc. Natl. Acad. Sci. U. S. A., 2013, 110,7998-8003.[Crossref]
  • [49] Wu C., et al., Building a multifunctional aptamer-based DNAnanoassembly for targeted cancer therapy, J. Am. Chem. Soc.,2013, 135, 18644-18650.
  • [50] Rothemund P.W.K., Folding DNA to create nanoscale shapesand patterns, Nature, 2006, 440, 297-302.
  • [51] Kuzuya A. & Ohya Y., Nanomechanical molecular devices madeof DNA origami, Acc. Chem. Res., 2014, 47, 1742-1749.[Crossref]
  • [52] Douglas S.M., Bachelet I. & Church G.M., A logic-gatednanorobot for targeted transport of molecular payloads,Science, 2012, 335, 831-834.
  • [53] Andersen E.S., et al., Self-assembly of a nanoscale DNA boxwith a controllable lid, Nature, 2009, 459, 73-76.
  • [54] Zhu G., et al., Noncanonical self-assembly of multifunctionalDNA nanoflowers for biomedical applications, J. Am. Chem.Soc., 2013, 135, 16438-16445.
  • [55] Thiel K.W., et al., Delivery of chemo-sensitizing siRNAs toHER2+-breast cancer cells using RNA aptamers, Nucleic AcidsRes., 2012, 40, 6319-6337.[Crossref]
  • [56] Thiel W.H., et al., Rapid identification of cell-specific,internalizing RNA aptamers with bioinformatics analyses of acell-based aptamer selection, PloS One, 2012, 7, e43836.
  • [57] Zhang H., Pi F., Shu D., Vieweger M. & Guo P., Using RNAnanoparticles with thermostable motifs and fluorogenicmodules for real-time detection of RNA folding and turnoverin prokaryotic and eukaryotic cells, Methods Mol., 2015, 1297,95-111.
  • [58] Layzer J.M., et al., In vivo activity of nuclease-resistant siRNAs,RNA, 2004, 10, 766-771.[Crossref]
  • [59] Morrissey D.V., et al., Activity of stabilized short interfering RNAin a mouse model of hepatitis B virus replication, Hepatology,2005, 41, 1349-1356.[Crossref]
  • [60] Keefe A.D. & Cload S.T., SELEX with modified nucleotides, Curr.Opin. Chem. Biol., 2008, 12, 448-456.[Crossref]
  • [61] Li H., Labean T.H. & Leong K.W., Nucleic acid-based nanoengineering:novel structures for biomedical applications, InterfaceFocus, 2011, 1, 702-724.
  • [62] Mei Q., et al., Stability of DNA origami nanoarrays in cell lysate,Nano Lett., 2011, 11, 1477-1482.[Crossref]
  • [63] Castro C.E., et al., A primer to scaffolded DNA origami, Nat.Methods, 2011, 8, 221-229.[Crossref]
  • [64] Walsh A.S., Yin H., Erben C.M., Wood M.J.A. & Turberfield A.J.,DNA cage delivery to mammalian cells, ACS Nano, 2011, 5,5427-5432.[Crossref]
  • [65] Shen X., et al., Visualization of the intracellular location andstability of DNA origami with a label-free fluorescent probe,Chem. Commun., 2012, 48, 11301-11303.[Crossref]
  • [66] Keum J.W. & Bermudez H., Enhanced resistance of DNAnanostructures to enzymatic digestion, Chem. Commun., 2009,45, 7036-7038.[Crossref]
  • [67] Jiang Z., et al., Serum-induced degradation of 3D DNA boxorigami observed with high-speed atomic force microscopy,Nano Res., 2015, doi:10.1007/s12274-015-0724-z
  • [68] Toy R., Peiris P.M., Ghaghada K.B. & Karathanasis E., Shapingcancer nanomedicine: the effect of particle shape on the in vivojourney of nanoparticles, Nanomed., 9, 2014, 121-134.[Crossref]
  • [69] Brencicova E. & Diebold S.S., Nucleic acids and endosomalpattern recognition: how to tell friend from foe?, Front. Cell.Infect. Microbiol., 2013, 3, 37.
  • [70] Wu J. & Chen Z.J., Innate immune sensing and signaling ofcytosolic nucleic acids, Annu. Rev. Immunol., 2014, 32,461-488.[Crossref]
  • [71] Robbins M., Judge A. & MacLachlan I., siRNA and innateimmunity, Oligonucleotides, 2009, 19, 89-102.[Crossref]
  • [72] Bourquin C., et al., Immunostimulatory RNA oligonucleotidestrigger an antigen-specific cytotoxic T-cell and IgG2a response,Blood, 2007, 109, 2953-2960.
  • [73] Radovic-Moreno A.F., et al., Immunomodulatory sphericalnucleic acids, Proc. Natl. Acad. Sci. U. S. A., 2015, 112,3892-3897.[Crossref]
  • [74] Khisamutdinov E.F., et al., Enhancing immunomodulation oninnate immunity by shape transition among RNA triangle,square and pentagon nanovehicles, Nucleic Acids Res. 2014,42, 9996-10004.[Crossref]
  • [75] Juliano R., Alam M. R., Dixit V. & Kang H., Mechanisms andstrategies for effective delivery of antisense and siRNA oligonucleotides,Nucleic Acids Res., 2008, 36, 4158-4171.[Crossref]
  • [76] Roepstorff K., et al., Differential effects of EGFR ligands onendocytic sorting of the receptor, Traffic, 2009, 10, 1115-1127.[Crossref]
  • [77] Dassie J.P., et al., Targeted inhibition of prostate cancermetastases with an RNA aptamer to prostate-specificmembrane antigen, Mol. Ther., 2014, 22, 1910-1922.[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.