Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 2 | 1 |

Article title

Self-assembly of large RNA structures: learning
from DNA nanotechnology

Content

Title variants

Languages of publication

EN

Abstracts

EN
Nucleic acid nanotechnology offers many
methods to build self-assembled structures using RNA
and DNA. These scaffolds are valuable in multiple
applications, such as sensing, drug delivery and
nanofabrication. Although RNA and DNA are similar
molecules, they also have unique chemical and
structural properties. RNA is generally less stable
than DNA, but it folds into a variety of tertiary motifs
that can be used to produce complex and functional
nanostructures. Another advantage of using RNA over
DNA is its ability to be encoded into genes and to be
expressed in vivo. Here we review existing approaches
for the self-assembly of RNA and DNA nanostructures
and specifically methods to assemble large RNA
structures. We describe de novo design approaches
used in DNA nanotechnology that can be ported to
RNA. Lastly, we discuss some of the challenges yet to
be solved to build micron-scale, multi stranded RNA
scaffolds.

Publisher

Year

Volume

2

Issue

1

Physical description

Dates

accepted
18 - 11 - 2015
online
2 - 2 - 2016
received
8 - 9 - 2015

Contributors

References

  • [1] Zhang F., Nangreave J., Liu Y., Yan H. Structural DNAnanotechnology: state of the art and future perspective. Journalof the American Chemical Society, 2014, 136, 11198–11211.
  • [2] Grabow W.W., Jaeger L. RNA self-assembly and RNAnanotechnology. Accounts of Chemical Research, 2014, 47,1871–1880.[Crossref]
  • [3] Delebecque C.J., Lindner A.B., Silver P.A., Aldaye F.A.Organization of intracellular reactions with rationally designedRNA assemblies. Science, 2011, 333, 470–474.
  • [4] Winfree E., Liu F., Wenzler L.A., Seeman N.C. Design andself-assembly of two-dimensional DNA crystals. Nature, 1998,394, 539–544.
  • [5] Rothemund P.W.K. Folding DNA to create nanoscale shapes andpatterns. Nature, 2006, 440, 297–302.
  • [6] Douglas S.M., Bachelet I., Church G.M. A logic-gated nanorobotfor targeted transport of molecular payloads. Science, 2012,335, 831–834.
  • [7] Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., GreenblattD.M., Meng E.C., et al. UCSF Chimera: a visualization systemfor exploratory research and analysis. Journal of ComputationalChemistry, 2004, 25, 1605–1612.[Crossref]
  • [8] Afonin K.A., Lindsay B., Shapiro B.A. Engineered RNAnanodesigns for applications in RNA nanotechnology. RNANanotechnology, 2013. 1, 1–15.
  • [9] Seeman N.C. Nucleic acid junctions and lattices. Journal ofTheoretical Biology, 1982, 99, 237–247.[Crossref]
  • [10] Schulman R., Winfree E. Synthesis of crystals with aprogrammable kinetic barrier to nucleation. Proceedings of theNational Academy of Sciences, 2007, 104, 15236–15241.
  • [11] Rothemund P.W.K., Ekani-Nkodo A., Papadakis N., KumarA., Fygenson D.K., Winfree E. Design and characterizationof programmable DNA nanotubes. Journal of the AmericanChemical Society, 2004, 126, 16344–16352.[Crossref]
  • [12] Douglas S.M., Dietz H., Liedl T., Hogberg B., Graf F., ShihW.M. Self-assembly of DNA into nanoscale three-dimensionalshapes. Nature, 2009, 459, 414–418.
  • [13] Sherman W.B., Seeman N.C. A precisely controlled DNA bipedwalking device. Nano Letters, 2004, 4, 1203–1207.[Crossref]
  • [14] Lund K., Manzo A.J., Dabby N., Michelotti N., Johnson-Buck A.,Nangreave J., et al. Molecular robots guided by prescriptivelandscapes. Nature, 2010, 465, 206–210.
  • [15] Franco E., Friedrichs E., Kim J., Jungmann R., Murray R., WinfreeE., et al. Timing molecular motion and production with asynthetic transcriptional clock. Proceedings of the NationalAcademy of Sciences, 2011, 108, E784–E793.
  • [16] Adleman L.M. Molecular computation of solutions tocombinatorial problems. Science, 1994, 266, 1021–1024.
  • [17] Rothemund P.W., Papadakis N., Winfree E. Algorithmicself-assembly of DNA Sierpinski triangles. Public Library ofScience Biology, 2004, 2, e424.
  • [18] Barish R.D., Schulman R., Rothemund P.W., Winfree E.An information-bearing seed for nucleating algorithmicself-assembly. Proceedings of the National Academy ofSciences, 2009, 106, 6054–6059.
  • [19] Dirks R.M., Lin M., Winfree E., Pierce N.A. Paradigms forcomputational nucleic acid design. Nucleic Acids Research,2004, 32, 1392–1403.[Crossref]
  • [20] SantaLucia J. A unified view of polymer, dumbbell, and oligonucleotideDNA nearest-neighbor thermodynamics. Proceedingsof the National Academy of Sciences, 1998, 95, 1460–1465.
  • [21] Seeman N.C. DNA nanotechnology: novel DNA constructions.Annual Review of Biophysics and Biomolecular Structure, 1998,27, 225–248.[Crossref]
  • [22] Zadeh J.N., Steenberg C.D., Bois J.S., Wolfe B.R., Pierce M.B.,Khan A.R., et al. NUPACK: Analysis of nucleic acid systems.Journal of Computational Chemistry, 2011, 32, 170–173.[Crossref]
  • [23] Markham N.R., Zuker M. UNAFold software for nucleic acidfolding and hybridization. Methods in Molecular Biology, 2008,453, 3–31.
  • [24] Seeman N.C. De novo design of sequences for nucleic acidstructural engineering. Journal of Biomolecular Structure andDynamics, 1990, 8, 573–581.
  • [25] Fu T., Seeman N. DNA double-crossover molecules.Biochemistry, 1993, 32, 3211–3220.[Crossref]
  • [26] Ekani-Nkodo A., Kumar A., Fygenson D.K. Joining and scissionin the self-assembly of nanotubes from DNA tiles. PhysicalReview Letters, 2004, 93, 268301.[Crossref]
  • [27] Rothemund P.W.K., Papadakis N., Winfree E. Algorithmicself-Assembly of DNA Sierpinski triangles. Public Library ofScience Biology, 2004, 2, 424–436.
  • [28] Mitchell J.C., Harris J.R., Malo J., Bath J., Turberfield A.J.Self-assembly of chiral DNA nanotubes. Journal of the AmericanChemical Society, 2004, 126, 16342–16343.[Crossref]
  • [29] Han D., Pal S., Nangreave J., Deng Z., Liu Y., Yan H. DNA origamiwith complex curvatures in three-dimensional space. Science,2011, 332, 342–346.
  • [30] Castro C.E., Kilchherr F., Kim D.N., Shiao E.L., Wauer T.,Wortmann P., et al. A primer to scaffolded DNA origami. NatureMethods, 2011, 8, 221–229.[Crossref]
  • [31] Yin P., Hariadi R.F., Sahu S., Choi H.M.T., Park S.H., LaBean T.H.,et al. Programming DNA tube circumferences. Science, 2008,321, 824–826.
  • [32] Ke Y., Ong L.L., Sun W., Song J., Dong M., Shih W.M., et al. DNAbrick crystals with prescribed depths. Nature Chemistry, 2014,6, 994–1002.[Crossref]
  • [33] Bai X.c., Martin T.G., Scheres S.H., Dietz H. Cryo-EM structure ofa 3D DNA-origami object. Proceedings of the National Academyof Sciences, 2012, 109, 20012–20017.
  • [34] Williams S., Lund K., Lin C., Wonka P., Lindsay S., Yan H.TIAMAT: a three-dimensional editing tool for complex DNAstructures. In DNA Computing, Springer, 90–101. 2009.
  • [35] Andersen E.S., Dong M., Nielsen M.M., Jahn K., Lind-ThomsenA., Mamdouh W., et al. DNA origami design of dolphin-shapedstructures with flexible tails. ACS Nano, 2008, 2, 1213–1218.[Crossref]
  • [36] Douglas S.M., Marblestone A.H., Teerapittayanon S.,Vazquez A., Church G.M., Shih W.M. Rapid prototyping of 3DDNA-origami shapes with caDNAno. Nucleic Acids Research,2009, 37, 5001–5006.[Crossref]
  • [37] Andersen E.S., Dong M., Nielsen M.M., Jahn K., Subramani R.,Mamdouh W., et al. Self-assembly of a nanoscale DNA box witha controllable lid. Nature, 2009, 459, 73–76.
  • [38] Dietz H., Douglas S.M., Shih W.M. Folding DNA into twisted andcurved nanoscale shapes. Science, 2009, 325, 725–730.
  • [39] Liu W., Zhong H., Wang R., Seeman N.C. Crystallinetwo-dimensional DNA-origami arrays. Angewandte Chemie,2011, 123, 278–281.
  • [40] Zhao Z., Liu Y., Yan H. Organizing DNA origami tiles into largerstructures using preformed scaffold frames. Nano Letters, 2011,11, 2997–3002.[Crossref]
  • [41] Iinuma R., Ke Y., Jungmann R., Schlichthaerle T., WoehrsteinJ.B., Yin P. Polyhedra self-assembled from DNA tripods andcharacterized with 3D DNA-PAINT. Science, 2014, 344, 65–69.
  • [42] Woo S., Rothemund P.W.K. Programmable molecularrecognition based on the geometry of DNA nanostructures.Nature Chemistry, 2011. 3, 620–627.[Crossref]
  • [43] Gerling T., Wagenbauer K.F., Neuner A.M., Dietz H. DynamicDNA devices and assemblies formed by shape-complementary,non–base pairing 3D components. Science, 2015, 347, 1446–1452.
  • [44] Wei B., Dai M., Yin P. Complex shapes self-assembled fromsingle-stranded DNA tiles. Nature, 2012, 485, 623–626.
  • [45] Ke Y., Ong L.L., Shih W.M., Yin P. Three-dimensional structuresself-assembled from DNA bricks. Science, 2012, 338,1177–1183.
  • [46] Lo P.K., Karam P., Aldaye F.A., McLaughlin C.K., Hamblin G.D.,Cosa G., et al. Loading and selective release of cargo in DNAnanotubes with longitudinal variation. Nature Chemistry, 2010,2, 319–328.[Crossref]
  • [47] Han D., Pal S., Yang Y., Jiang S., Nangreave J., Liu Y., et al. DNAgridiron nanostructures based on four-arm junctions. Science,2013, 339, 1412–1415.
  • [48] Zhang F., Jiang S., Wu S., Li Y., Mao C., Liu Y., et al. Complexwireframe DNA origami nanostructures with multi-arm junctionvertices. Nature Nanotechnology, 2015, 10, 779–784.[Crossref]
  • [49] Benson E., Mohammed A., Gardell J., Masich S., Czeizler E.,Orponen P., et al. DNA rendering of polyhedral meshes at thenanoscale. Nature, 2015, 523, 441–444.
  • [50] Paukstelis P.J., Nowakowski J., Birktoft J.J., Seeman N.C. Crystalstructure of a continuous three-dimensional DNA lattice.Chemistry & Biology, 2004, 11, 1119–1126.
  • [51] Zheng J., Birktoft J.J., Chen Y., Wang T., Sha R., ConstantinouP.E., et al. From molecular to macroscopic via the rationaldesign of a self-assembled 3D DNA crystal. Nature, 2009, 461,74–77.
  • [52] Geng C., Paukstelis P.J. DNA crystals as vehicles forbiocatalysis. Journal of the American Chemical Society, 2014,136, 7817–7820.
  • [53] Keefe A.D., Pai S., Ellington A. Aptamers as therapeutics.Nature Reviews Drug Discovery, 2010, 9, 537–550.[Crossref]
  • [54] Montange R.K., Batey R.T. Riboswitches: emerging themesin RNA structure and function. Annual Review of Biophysics,2008, 37, 117–133.[Crossref]
  • [55] Afonin K.A., Viard M., Koyfman A.Y., Martins A.N., KasprzakW.K., Panigaj M., et al. Multi- functional RNA nanoparticles.Nano Letters, 2014, 14, 5662–5671.[Crossref]
  • [56] Guo P., Haque F., Hallahan B., Reif R., Li H. Uniqueness,advantages, challenges, solutions, and perspectives intherapeutics applying RNA nanotechnology. Nucleic AcidTherapeutics, 2012, 22, 226–245.
  • [57] Chworos A., Severcan I., Koyfman A.Y., Weinkam P., Oroudjev E.,Hansma H.G., et al. Building programmable jigsaw puzzles withRNA. Science, 2004, 306, 2068–2072.
  • [58] Geary C., Rothemund P.W., Andersen E.S. A singlestrandedarchitecture for cotranscriptional folding of RNAnanostructures. Science, 2014. 345, 799–804.
  • [59] Afonin K.A., Bindewald E., Yaghoubian A.J., Voss N., JacovettyE., Shapiro B.A., et al. In vitro assembly of cubic RNA-basedscaffolds designed in silico. Nature Nanotechnology, 2010, 5,676–682.[Crossref]
  • [60] Afonin K.A., Grabow W.W., Walker F.M., Bindewald E.,Dobrovolskaia M.A., Shapiro B.A., et al. Design andself-assembly of siRNA-functionalized RNA nanoparticles foruse in automated nanomedicine. Nature Protocols, 2011, 6,2022–2034.[Crossref]
  • [61] Afonin K.A., Kireeva M., Grabow W.W., Kashlev M., JaegerL., Shapiro B.A. Co-transcriptional assembly of chemicallymodified RNA nanoparticles functionalized with siRNAs. NanoLetters, 2012, 12, 5192–5195.[Crossref]
  • [62] Abels J., Moreno-Herrero F., Van der Heijden T., Dekker C.,Dekker N. Single-molecule measurements of the persistencelength of double-stranded RNA. Biophysical Journal, 2005, 88,2737–2744.[Crossref]
  • [63] Kuli ́c I.M., Mohrbach H., Lobaskin V., Thaokar R., SchiesselH. Apparent persistence length renormalization of bent DNA.Physical Review E, 2005, 72, 041905.[Crossref]
  • [64] Freier S.M., Kierzek R., Jaeger J.A., Sugimoto N., CaruthersM.H., Neilson T., et al. Improved free-energy parameters forpredictions of RNA duplex stability. Proceedings of the NationalAcademy of Sciences, 1986, 83, 9373–9377.
  • [65] SantaLucia J. A unified view of polymer, dumbbell, and oligonucleotideDNA nearest-neighbor thermodynamics. Proceedingsof the National Academy of Sciences, 1998, 95, 1460–1465.
  • [66] Mathews D.H., Turner D.H. Prediction of RNA secondarystructure by free energy minimization. Current Opinion inStructural Biology, 2006, 16, 270–278.[Crossref]
  • [67] Batey R.T., Rambo R.P., Doudna J.A., et al. Tertiary motifs inRNA structure and folding. Angewandte Chemie InternationalEdition, 1999, 38, 2326–2343.[Crossref]
  • [68] Nasalean L., Baudrey S., Leontis N.B., Jaeger L. Controlling RNAself-assembly to form filaments. Nucleic Acids Research, 2006,34, 1381–1392.[Crossref]
  • [69] Severcan I., Geary C., Chworos A., Voss N., Jacovetty E., JaegerL. A polyhedron made of tRNAs. Nature Chemistry, 2010, 2,772–779.[Crossref]
  • [70] Grabow W.W., Zakrevsky P., Afonin K.A., Chworos A., ShapiroB.A., Jaeger L. Self-assembling RNA nanorings based on RNAI/IIinverse kissing complexes. Nano Letters, 2011, 11, 878–887.[Crossref]
  • [71] Jaeger L., Westhof E., Leontis N.B. TectoRNA: modular assemblyunits for the construction of RNA nano-objects. Nucleic acidsresearch, 2001, 29, 455–463.[Crossref]
  • [72] Wang B. RNA Nanotechnology. CRC Press, 2014, ISBN9789814411646.
  • [73] Bindewald E., Hayes R., Yingling Y.G., Kasprzak W., Shapiro B.A.RNAJunction: a database of RNA junctions and kissing loops forthree-dimensional structural analysis and nanodesign. NucleicAcids Research, 2008, 36, D392–D397.
  • [74] Bindewald E., Grunewald C., Boyle B., O’Connor M., ShapiroB.A. Computational strategies for the automated design of RNAnanoscale structures from building blocks using NanoTiler.Journal of Molecular Graphics and Modelling, 2008, 27,299–308.
  • [75] Zhang D.Y., Seelig G. Dynamic DNA nanotechnology usingstrand-displacement reactions. Nature Chemistry, 2011, 3,103–113.[Crossref]
  • [76] Zhang D.Y., Hariadi R.F., Choi H.M., Winfree E. Integrating DNAstrand-displacement circuitry with DNA tile self-assembly.Nature Communications, 2013, 4, 1965.
  • [77] Yu J., Liu Z., Jiang W., Wang G., Mao C. De novo design of anRNA tile that self-assembles into a homo-octameric nanoprism.Nature Communications, 2015, 6, 5724.[Crossref]
  • [78] Ko S.H., Su M., Zhang C., Ribbe A.E., Jiang W., Mao C.Synergistic self-assembly of RNA and DNA molecules. NatureChemistry, 2010, 2, 1050–1055.[Crossref]
  • [79] Studio A.D. 1.7, Accelrys Software Inc., San Diego, CA, USA.,2006.
  • [80] Endo M., Takeuchi Y., Emura T., Hidaka K., SugiyamaH. Preparation of chemically modified RNA origaminanostructures. Chemistry-A European Journal, 2014, 20,15330–15333.[Crossref]
  • [81] Sachdeva G., Garg A., Godding D., Way J.C., Silver P.A. Invivo co-localization of enzymes on RNA scaffolds increasesmetabolic production in a geometrically dependent manner.Nucleic Acids Research, 2014, 42, 9493–9503.[Crossref]
  • [82] Koyfman A.Y., Braun G., Magonov S., Chworos A., Reich N.O.,Jaeger L. Controlled spacing of cationic gold nanoparticles bynanocrown RNA. Journal of the American Chemical Society,2005, 127, 11886–11887.[Crossref]
  • [83] Park S.H., Barish R., Li H., Reif J.H., Finkelstein G., Yan H., etal. Three-helix bundle DNA tiles self-assemble into 2D latticeor 1D templates for silver nanowires. Nano Letters, 2005, 5,693–696.[Crossref]
  • [84] Koyfman A.Y., Braun G.B., Reich N.O. Cell-targetedself-assembled DNA nanostructures. Journal of the AmericanChemical Society, 2009, 131, 14237–14239.
  • [85] Yingling Y.G., Shapiro B.A. Computational design of an RNAhexagonal nanoring and an RNA nanotube. Nano Letters, 2007,7, 2328–2334.[Crossref]
  • [86] He Y., Chen Y., Liu H., Ribbe A.E., Mao C. Self-assembly ofhexagonal DNA two-dimensional (2D) arrays. Journal of theAmerican Chemical Society, 2005, 127, 12202–12203.[Crossref]
  • [87] He Y., Tian Y., Chen Y., Deng Z., Ribbe A.E., Mao C. Sequencesymmetry as a tool for designing DNA nanostructures.Angewandte Chemie, 2005, 117, 6852–6854.[Crossref]
  • [88] Koyfman A.Y., Magonov S.N., Reich N.O. Self-assembly of DNAarrays into multilayer stacks. Langmuir, 2008, 25, 1091–1096.
  • [89] Liu H., Chen Y., He Y., Ribbe A.E., Mao C. Approaching thelimit: can one DNA oligonucleotide assemble into largenanostructures? Angewandte Chemie International Edition,2006, 45, 1942– 1945.[Crossref]
  • [90] Mao C., LaBean T.H., Reif J.H., Seeman N.C. Logicalcomputation using algorithmic self-assembly of DNA triplecrossovermolecules. Nature, 2000, 407, 493–496.
  • [91] Voigt N.V., Torring T., Rotaru A., Jacobsen M.F., Ravnsbaek J.B.,Subramani R., et al. Single-molecule chemical reactions onDNA origami. Nature Nanotechnology, 2010, 5, 200–203.[Crossref]
  • [92] Kuzyk A., Schreiber R., Fan Z., Pardatscher G., Roller E.M.,Hogele A., et al. DNA-based self-assembly of chiral plasmonicnanostructures with tailored optical response. Nature, 2012,483, 311–314.
  • [93] Sharma J., Chhabra R., Cheng A., Brownell J., Liu Y., Yan H.Control of self-sssembly of DNA tubules through integration ofgold nanoparticles. Science, 2009, 323, 112–116.
  • [94] Hariadi R.F., Cale M., Sivaramakrishnan S. Myosin lever armdirects collective motion on cellular actin network. Proceedingsof the National Academy of Sciences, 2014, 111, 4091–4096.
  • [95] Kjems J., Ferapontova E., Gothelf K.V. Nucleic AcidNanotechnology. Springer, 2014.
  • [96] Shu D., Shu Y., Haque F., Abdelmawla S., Guo P. Thermodynamicallystable RNA three-way junction for constructingmultifunctional nanoparticles for delivery of therapeutics.Nature Nanotechnology, 2011, 6, 658–667.[Crossref]
  • [97] Andersen E., Nielsen M. DNA origami design of 3Dnanostructures. Protocol Exchange, 2009.
  • [98] Shapiro B.A., Yingling Y.G., Kasprzak W., Bindewald E. Bridgingthe gap in RNA structure prediction. Current Opinion inStructural Biology, 2007, 17, 157–165.[Crossref]
  • [99] Jossinet F., Ludwig T.E., Westhof E. Assemble: an interactivegraphical tool to analyze and build RNA architectures at the 2Dand 3D levels. Bioinformatics, 2010, 26, 2057–2059.[Crossref]
  • [100] Martinez H.M., Maizel Jr J.V., Shapiro B.A. RNA2D3D: aprogram for generating, viewing, and comparing 3-dimensionalmodels of RNA. Journal of Biomolecular Structure andDynamics, 2008, 25, 669–683.
  • [101] Bindewald E., Afonin K., Jaeger L., Shapiro B.A. MultistrandRNA secondary structure prediction and nanostructure designincluding pseudoknots. ACS Nano, 2011, 5, 9542–9551.[Crossref]
  • [102] Martin C.T., Muller D.K., Coleman J.E. Processivity in earlystages of transcription by T7 RNA polymerase. Biochemistry,1988, 27, 3966–3974.[Crossref]
  • [103] Hsu L.M., Vo N.V., Kane C.M., Chamberlin M.J. In vitro studiesof transcript initiation by Escherichia coli RNA polymerase. 1.RNA chain initiation, abortive initiation, and promoter escapeat three bacteriophage promoters. Biochemistry, 2003, 42,3777–3786.
  • [104] Vo N.V., Hsu L.M., Kane C.M., Chamberlin M.J. In vitro studiesof transcript initiation by Escherichia coli RNA polymerase.3. Influences of individual DNA elements within the promoterrecognition region on abortive initiation and promoter escape.Biochemistry, 2003. 42, 3798–3811.
  • [105] Goldman S.R., Ebright R.H., Nickels B.E. Direct detection ofabortive RNA transcripts in vivo. Science, 2009, 324, 927–928.
  • [106] Triana-Alonso F.J., Dabrowski M., Wadzack J., NierhausK.H. Self-coded 3’-extension of run-off transcripts producesaberrant products during in vitro transcription with T7 RNApolymerase. Journal of Biological Chemistry, 1995, 270,6298–6307.
  • [107] Kim J., White K.S., Winfree E. Construction of an in vitrobistable circuit from synthetic transcriptional switches.Molecular Systems Biology, 2006, 1, 68.
  • [108] Myhrvold C., Dai M., Silver P.A., Yin P. Isothermalself-assembly of complex DNA structures under diverse andbiocompatible conditions. Nano Letters, 2013, 13, 4242–4248.[Crossref]
  • [109] Zhang F., Nangreave J., Liu Y., Yan H. Reconfigurable DNAorigami to generate quasifractal patterns. Nano Letters, 2012,12, 3290–3295.[Crossref]
  • [110] Yurke B., Mills A.P. Using DNA to power nanostructures.Genetic Programming and Evolvable Machines, 2003, 4,111–122.[Crossref]
  • [111] Franco E., Giordano G., Forsberg P.O., Murray R.M. Negativeautoregulation matches production and demand in synthetictranscriptional networks. ACS Synthetic Biology, 2014, 3,589–599.
  • [112] Feng L., Park S.H., Reif J.H., Yan H. A Two-state DNA latticeswitched by DNA nanoactuator. Angewandte Chemie, 2003,115, 4478–4482.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_rnan-2015-0002
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.