Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 2 | 1 |

Article title

Lactic acid and hydrogen from glycerol
via acceptorless dehydrogenation using
homogeneous catalysts

Content

Title variants

Languages of publication

EN

Abstracts

EN
Acceptorless dehydrogenation of alcohols has
emerged as a powerful methodology for the valorization of
biomass derived platform chemicals and building blocks. In
this review we provide a short overview of the advantages
and possible product outcomes of this method. The main
focus will be devoted to the conversion of glycerol, which
is the major waste product of biodiesel production, to lactic
acid. While extensive research addresses the development
of heterogeneous catalysts, recently new and highly active
iridium and ruthenium complexes have also been reported.
These novel homogeneous catalysts are even more active
than the already reported heterogeneous systems and
enable the direct conversion of glycerol into lactic acid and
molecular hydrogen. While the product hydrogen might be
used either as fuel or as reducing agent for other processes,
lactic acid is a platform chemical widely employed by the
polymer, pharmaceutical and food industries. The used
catalytic methodology is atom-economic, waste-free and
is uniquely suited for the efficient conversion of renewable
resources.

Publisher

Year

Volume

2

Issue

1

Physical description

Dates

accepted
1 - 6 - 2015
online
29 - 6 - 2015
received
6 - 3 - 2015

Contributors

  • Stratingh Institute for Chemistry, University of
    Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands)
author
  • Stratingh Institute for Chemistry, University of
    Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands)

References

  • [1] van Putten R.-J., van der Waal J. C., de Jong E., Rasrendra C. B.,Heeres H. J., de Vries J. G., Hydroxymethylfurfural, A versatileplatform chemical made from renewable resources, Chem. Rev.2013, 113, 1499−1597.[Crossref]
  • [2] Barta K., Ford P. C., Catalytic conversion of nonfood woodybiomass solids to organic liquids, Acc. Chem. Res., 2014, 47,1503–1512 and references therein.[Crossref]
  • [3] Anastas P. T., Warner J. C., Green Chemistry: Theory andPractice, Oxford University Press, New York, 1998.
  • [4] Gunanathan C., Milstein D., Applications of acceptorlessdehydrogenation and related transformations in chemicalsynthesis, Science, 2013, 341, 251-260.
  • [5] Dobereiner G. E., Crabtree R. H., Dehydrogenation as asubstrate-activating strategy in homogeneous transition-metalcatalysis, Chem. Rev., 2010, 110, 681–703.[Crossref]
  • [6] Cortright R. D., Davda R. R., Dumesic J. A., Hydrogen fromcatalytic reforming of biomass-derived hydrocarbons in liquidwater, Nature, 2002, 418, 964-967.
  • [7] Davda R. R., Dumesic J. A., Renewable hydrogen by aqueousphasereforming of glucose, Chem. Commun., 2004, 36-37.
  • [8] Tran N. H., Kannangara G. S. K., Conversion of glycerol tohydrogen rich gas, Chem. Soc. Rev., 2013, 42, 9454-9479.[Crossref]
  • [9] Choi J., MacArthur A. H. R., Brookhart M., Goldman A. S.,Dehydrogenation and related reactions catalyzed by iridiumpincer complexes, Chem. Rev., 2011, 111, 1761–1779.[Crossref]
  • [10] Crabtree R. H., Hydrogen storage in liquid organic heterocycles,Energy Environ. Sci., 2008, 1, 134–138.[Crossref]
  • [11] Dobson A., Robinson S. D., Catalytic dehydrogenation ofprimary and secondary alcohols by Ru(OCOCF3)2(CO)(PPh3)2, J.Organomet. Chem., 1975, 87, C52-C53.
  • [12] Morton D., Cole-Hamilton D. J., Molecular hydrogen complexesin catalysis: highly efficient hydrogen production fromalcoholic substrates catalysed by ruthenium complexes, J.Chem. Soc., Chem. Commun., 1988, 1154-1156.[Crossref]
  • [13] Lin Y., Ma D., Lu X., Iridium pentahydride complex catalyzeddehydrogenation of alcohols in the absence of a hydrogenacceptor, Tetrahedron Lett., 1987, 28, 3115-3118.[Crossref]
  • [14] Morton D., Cole-Hamilton D. J., Utuk I. D., Paneque-Sosa M.,Lopez-Poveda M., Hydrogen production from ethanol catalysedby group 8 metal complexes, J. Chem. Soc., Dalton Trans.,1989, 489-495.[Crossref]
  • [15] Ligthart G. B. W. L., Meijer R. H., Donners M. P. J., Meuldijk J.,Vekemans J. A. J. M., Hulshof L. A., Highly sustainable catalytic dehydrogenation of alcohols with evolution of hydrogen gas,Tetrahedron Letters, 2003, 44, 1507-1509.[Crossref]
  • [16] Tuteja J., Choudhary H., Nishimura S., Ebitani K., Directsynthesis of 1,6-hexanediol from HMF over a heterogeneousPd/ZrP catalyst using formic acid as hydrogen source,ChemSusChem, 2014, 7, 96-100.
  • [17] Buntara T., Noel S., Huat Phua P., Melián-Cabrera I., de VriesJ. G., Heeres H. J., Caprolactam from Renewable Resources:catalytic conversion of 5-Hydroxymethylfurfural intocaprolactone, Angew. Chem. Int. Ed., 2011, 50, 7083-7087.
  • [18] Nakagawa Y., Tomishige K., Production of 1,5-pentanediolfrom biomass via furfural and tetrahydrofurfuryl alcohol, Catal.Today, 2012, 195, 146-153.
  • [19] Allgeier A. M., De Silva W. I. N., Menning C., Ritter J.C., Sengupta S. K., October 2013, Production of alpha,omega-diols, U.S. patent 20130289319.
  • [20] Suzuki T., Morita K., Tsuchida M., Hiroi K., Mild andchemoselective synthesis of lactones from diols using anovel metal-ligand bifunctional catalyst, Org. Lett., 2002, 4,2361-2363.[Crossref]
  • [21] Zhao J., Hartwig J. F., Acceptorless, neat, ruthenium-catalyzeddehydrogenative Cyclization of Diols to Lactones, Organometallics,2005, 24, 2441-2446.[Crossref]
  • [22] Tseng K.-N. T., Kampf J. W., Szymczak N. K., Base-free,acceptorless, and chemoselective alcohol dehydrogenationcatalyzed by an amide-derived NNN-Ruthenium(II) hydridecomplex, Organometallics, 2013, 32, 2046-2049.[Crossref]
  • [23] Chakraborty S., Lagaditis P. O., Förster M., Bielinski E. A.,Hazari N., Holthausen M. C., Jones W. D., Schneider S.,Well-defined iron catalysts for the acceptorless reversibledehydrogenation-hydrogenation of alcohols and ketones,Organometallics, 2013, 32, 2046−2049.
  • [24] Hunsicker D. M., Dauphinais B. C., Ilrath S. P., Robertson N.J., Synthesis of high molecular weight polyesters via in vacuodehydrogenation polymerization of diols, Macromol. RapidCommun., 2012, 33, 232-236.
  • [25] Gnanaprakasam B., Balaraman E., Gunanathan C., MilsteinD., Synthesis of polyamides from diols and diamines withliberation of H2, J. Polym. Sci. A Polym. Chem., 2012, 50,1755-1765.[Crossref]
  • [26] Zeng H., Guan Z., Direct Synthesis of polyamides via catalyticdehydrogenation of diols and diamines, J. Am. Chem. Soc.,2011, 133, 1159-1161.
  • [27] Kozlowski J. T., Davis R. J., Heterogeneous catalysts for theGuerbet coupling of alcohols, ACS Catal., 2013, 3, 1588-1600.[Crossref]
  • [28] Dowson G. R. M., Haddow M. F., Lee J., Wingad R. L., Wass D.F., Catalytic Conversion of ethanol into an advanced biofuel:unprecedented selectivity for n-butanol, Angew. Chem. Int. Ed.,2013, 52, 9005-9008.[Crossref]
  • [29] Hamid M. Haniti S. A., Allen C. L., Lamb G. W., Maxwell A. C.,Maytum H. C., Watson A. J. A., Williams J. M. J., RutheniumcatalyzedN-alkylation of amines and sulfonamides usingborrowing hydrogen methodology, J. Am. Chem. Soc., 2009,131, 1766-1774.
  • [30] Watson A. J. A., Maxwell A. C., Williams J. M. J., Borrowinghydrogen methodology for amine synthesis under solvent-freemicrowave conditions, J. Org. Chem., 2011, 76, 2328-2331.[Crossref]
  • [31] Saidi O., Blacker A. J., Farah M. M., Marsden S. P., Williams J. M.J. , Iridium-catalysed amine alkylation with alcohols in water,Chem. Commun., 2010, 46, 1541-1543.[Crossref]
  • [32] Yan T., Feringa B. L., Barta K., Iron catalysed direct alkylation ofamines with alcohols, Nature Comm., 2014, 5, 1-7.
  • [33] Obora Y., Recent Advances in α-alkylation reactions usingalcohols with hydrogen borrowing methodologies, ACS Catal.,2014, 4, 3972–3981.[Crossref]
  • [34] Marr A. C., Organometallic hydrogen transfer and dehydrogenationcatalysts for the conversion of bio-renewablealcohols, Catal. Sci. Technol., 2012, 2, 279-287.[Crossref]
  • [35] Hamid M. H. S. A., Slatford P. A., Williams J. M. J., Borrowinghydrogen in the activation of alcohols, Adv. Synth. Catal.,2007, 349, 1555-1575.
  • [36] Trincado M., Banerjee D., Grützmacher H., Molecular catalystsfor hydrogen production from alcohols, Energy Environ. Sci.,2014, 7, 2464-2503.[Crossref]
  • [37] Nova A., Balcells D., Schley N. D., Dobereiner G. E., Crabtree R.H., Eisenstein O., Organometallics, 200, 29, 6548-6558.
  • [38] Schley N. D., Dobereiner G. E., Crabtree R. H., Organometallics,2011, 30, 4174-4179.[Crossref]
  • [39] Nielsen M., Alberico E., Baumann W., Drexler H.-J., JungeH., Gladiali S., Beller M., Low-temperature aqueous-phasemethanol dehydrogenation to hydrogen and carbon dioxide,Nature, 2013, 495, 85-90.
  • [40] Rodríguez-Lugo R. E., Trincado M., Vogt M., Tewes F., Santiso-Quinones G., Grützmacher H., A homogeneous transition metalcomplex for clean hydrogen production from methanol-watermixtures, Nature Chem., 2013, 5, 342-347.[Crossref]
  • [41] Sponholz P., Mellmann D., Cordes C., Alsabeh P. G., Li B.,Li Y., Nielsen M., Junge H., Dixneuf P., Beller M., Efficientand selective hydrogen generation from bioethanol usingruthenium pincer-type complexes, ChemSusChem, 2014, 7,2419-2422.[Crossref]
  • [42] Palo D. R., Dagle R. A., Holladay, J. D., Methanol steamreforming for hydrogen production, Chem. Rev., 2007, 107,3992-4021.[Crossref]
  • [43] Heim L. E. , Schlörer N. E., J.-H. Choi, Prechtl M. H. G, Selectiveand mild hydrogen production using water and formaldehyde,Nature Comm., 2014, 5, 1-8.
  • [44] Ayoub M., Abdullah A. Z., Critical review on the current scenarioand significance of crude glycerol resulting from biodieselindustry towards more sustainable renewable energy industry,Renew. Sust. Energ. Rev., 2012, 16, 2671-2686.[Crossref]
  • [45] Ruppert A. M., Weinberg K., Palkovits R., Hydrogenolysisgoes bio: from carbohydrates and sugar alcohols to platformchemicals, Angew. Chem. Int. Ed., 2012, 51, 2564-2601.[Crossref]
  • [46] Besson M., Gallezot P., Pinel C., Conversion of Biomassinto chemicals over metal catalysts, Chem. Rev., 2014, 114,1827-1870.[Crossref]
  • [47] Cespi D., Passarini F., Mastragostino G., Vassura I., Larocca S.,Iaconi A., Chieregato A., Duboise J.-L., Cavani F., Glycerol asfeedstock in the synthesis of chemicals: a life cycle analysis foracrolein production, Green Chem., 2015, 17, 343-355.[Crossref]
  • [48] Zhou C.-H., Beltramini J. N., Fana Y.-X., Lu G. Q., Chemoselectivecatalytic conversion of glycerol as a biorenewable source tovaluable commodity chemicals, Chem. Soc. Rev., 2008, 37,527-549.[Crossref]
  • [49] Slomkowski S., Penczek S., Duda A., Polym. Adv.Technol. 2014,25, 436-447.[Crossref]
  • [50] Morales M., Dapsens P. Y., Giovinazzo I., Witte J., MondelliC., Papadokonstantakis S., Hungerbühler K., Pérez-RamírezJ., Environmental and economic assessment of lactic acid production from glycerol using cascade bio and chemocatalysis,Energy Environ. Sci., 2015, 8, 558-567.[Crossref]
  • [51] Maris E. P., Davis R. J., Hydrogenolysis of glycerol over carbonsupportedRu and Pt catalysts, Journal of Catalysis, 2007, 249,328-337.
  • [52] Purushothaman R. K. P., van Haveren J., van Es D.S., Melián-Cabrera I., Meeldijk J.D., Heeres H.J., An efficient onepot conversion of glycerol to lactic acid using bimetallicgold-platinum catalysts on a nanocrystalline CeO2 support,Appl. Catal. B: Environmental, 2014, 147, 92-100.
  • [53] ten Dam J., Kapteijn F., Djanashvili K., Hanefeld U., Tuningselectivity of Pt/CaCO3 in glycerol hydrogenolysis-A Design ofExperiments approach, Catal. Commun., 2011, 13, 1-5.
  • [54] Xu J., Hongye Zhang H., Zhao Y.,Yu B., Chen S., Li Y., Hao L.,Zhimin Liu Z., Selective oxidation of glycerol to lactic acidunder acidic conditions using AuPd/TiO2 catalyst, Green Chem.,2013,15, 1520-1525.
  • [55] Cho H. J., Chang C.-C., Fan W., Base free, one-pot synthesisof lactic acid from glycerol using a bifunctional Pt/Sn-MFIcatalyst, Green Chem., 2014, 16, 3428-3433.[Crossref]
  • [56] Sharninghausen L. S., Campos J., Manas M. G., Crabtree R. H.,Efficient selective and atom economic catalytic conversion ofglycerol to lactic acid, Nature Comm., 2014, 5, 1-9.
  • [57] Azua A., Mata J. A., Peris E., Iridium NHC based catalysts fortransfer hydrogenation processes using glycerol as solvent andhydrogen donor, Organometallics, 2011, 30, 5532–5536.[Crossref]
  • [58] Azua A., Mata J. A., Peris E., Lamaty F., Martinez J., E. Colacino,Alternative energy input for transfer hydrogenation usingiridium NHC based catalysts in glycerol as hydrogen donor andsolvent, Organometallics, 2012, 31, 3911-3919.[Crossref]
  • [59] Hintermair U., Campos J., Brewster T. P., Pratt L. M., SchleyN. D., Crabtree R. H., Hydrogen-transfer catalysis with Cp*IrIIIcomplexes: the influence of the ancillary ligands, ACS catal.,2014, 4, 99-108.[Crossref]
  • [60] Campos J., Hintermair U., Brewster T. P., Takase M. K., CrabtreeR. H., Catalyst activation by loss of cyclopentadienyl ligands inhydrogen transfer catalysis with Cp*IrIII complexes, ACS Catal.,2014, 4, 973-985.[Crossref]
  • [61] Gnanamgari D., Sauer E. L. O., Schley N. D., Butler C., IncarvitoC. D., Crabtree R. H., Iridium and ruthenium complexeswith chelating N-heterocyclic carbenes: efficient catalystsfor transfer hydrogenation, β-alkylation of alcohols, andN-alkylation of amines, Organometallics, 2009, 28, 321-325.[Crossref]
  • [62] Crotti C., Kaspar J., Farnetti, E., Dehydrogenation of glycerolto dihydroxyacetone catalyzed by iridium complexes with P–Nligands, Green Chem., 2010, 12, 1295-1300.[Crossref]
  • [63] Appayee C., Breslow R., Deuterium studies reveal a newmechanism for the formose reaction involving hydride shifts, J.Am. Chem. Soc., 2014, 136, 3720–3723.
  • [64] Manas M. G., Campos J., Sharninghausen L. S., Lin E., CrabtreeR. H., Green Chem., 2015, 17, 594-600.[Crossref]
  • [65] Campos J., Sharninghausen L. S., Crabtree R. H., Balcells D.,Angew. Chem. Int. Ed., 2014, 53, 12808-12811.[Crossref]
  • [66] Campos J., Sharninghausen L. S., Manas M. G., Crabtree R. H.,Inorg. Chem., 2015, DOI: 10.1021/ic502521c.[Crossref]
  • [67] Li Y., Nielsen M., Li B., Dixneuf P. H., Junge H., Beller M.,Ruthenium-catalyzed hydrogen generation from glycerol andselective synthesis of lactic acid, Green Chem., 2015, 17,193-198.[Crossref]
  • [68] Junge H., Beller M., Ruthenium-catalyzed generation ofhydrogen from iso-propanol, Tetrahedron Lett., 2005, 46,1031-1034.[Crossref]
  • [69] Junge H., Loges B., Beller M., Novel improved rutheniumcatalysts for the generation of hydrogen from alcohols, Chem.Comm., 2007, 522-524.
  • [70] Nielsen M., Kammer A., Cozzula D., Junge H., Gladiali S.,Beller M., Efficient Hydrogen Production from alcohols undermild reaction conditions, Angew. Chem. Int. Ed., 2011, 50,9593-9597.[Crossref]
  • [71] Nielsen M., Junge H., Kammer A., Beller M., Towards a greenprocess for bulk-ccale synthesis of ethyl acetate: efficientacceptorless dehydrogenation of ethanol, 2012, Angew. Chem.Int. Ed., 51, 5711–5713.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_recat-2015-0008
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.