Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 1 | 1 |

Article title

Multiscale modeling of plasticity in a copper
single crystal deformed at high strain rates

Content

Title variants

Languages of publication

EN

Abstracts

EN
A hierarchical multiscale modeling approach is
presented to predict the mechanical response of dynamically
deformed (1100 s−1−4500 s−1) copper single crystal in
two different crystallographic orientations.Anattempt has
been made to bridge the gap between nano-, micro- and
meso- scales. In view of this, Molecular Dynamics (MD)
simulations at nanoscale are performed to quantify the
drag coefficient for dislocations which has been exploited
in Dislocation Dynamics (DD) regime at the microscale.
Discrete dislocation dynamics simulations are then performed
to calculate the hardening parameters required
by the physics based Crystal Plasticity (CP) model at the
mesoscale. The crystal plasticity model employed is based
on thermally activated theory for plastic flow. Crystal plasticity
simulations are performed to quantify the mechanical
response of the copper single crystal in terms of stressstrain
curves and shape changes under dynamic loading.
The deformation response obtained from CP simulations
is in good agreement with the experimental data.

Publisher

Year

Volume

1

Issue

1

Physical description

Dates

online
1 - 9 - 2015
received
16 - 2 - 2015
accepted
25 - 6 - 2015

Contributors

author
  • Refueling Technology
    Division, Bhabha Atomic Research Centre, Mumbai - 400 085, India
author
  • Reactor Safety Division,
    Bhabha Atomic Research Centre, Mumbai - 400 085, India
author
  • Refueling Technology
    Division, Bhabha Atomic Research Centre, Mumbai - 400 085, India
author
  • Refueling Technology
    Division, Bhabha Atomic Research Centre, Mumbai - 400 085, India

References

  • [1] S. Balasubramanian, L. Anand, Elasto-viscoplastic constitutiveequations for polycrystalline fcc materials at low homologous temperatures, Journal of the Mechanics and Physics of Solids50 (2002) 101–126.[Crossref]
  • [2] A. Ma, F. Roters, D. Raabe, A dislocation density based constitutivelaw for bcc materials in crystal plasticity fem, ComputationalMaterials Science 39 (2007) 91–95.[Crossref]
  • [3] A. Ma, F. Roters, D. Raabe, A dislocation density based constitutivemodel for crystal plasticity fem including geometricallynecessary dislocations, Acta Materialia 54 (2006) 2169–2179.[Crossref]
  • [4] A. Alankar, I. N. Mastorakos, D. P. Field, A dislocation-densitybased3d crystal plasticity model for pure aluminum, Acta Materialia57 (2009) 5936–5946.
  • [5] C. Gao, L. Zhang, Constitutive modelling of plasticity of fcc metalsunder extremely high strain rates, International Journal ofPlasticity 32-33 (2012) 121–133.[Crossref]
  • [6] B. L. Hansen, I. J. Beyerlein, C. A. Bronkhorst, E. K. Cerreta,D. Dennis-Koller, A dislocation-based multi-rate single crystalplasticity model, International Journal of Plasticity 44 (2013)129–146.[Crossref]
  • [7] D. H. Kalantar, B. A. Remington, J. D. Colvin, K.O. Mikaelian, S. V.Weber, L. G. Wiley, J. S. Wark, A. Loveridge, A. M. Allen, A. A.Hauer, M. A. Meyers, Solid-state experiments at high pressureand strain rate, Physics of Plasmas 7 (2000) 1999–2006.[Crossref]
  • [8] G. I. Kanel, S. V. Razorenov, K. Baumung, J. Singer, Dynamicyield and tensile strength of aluminum single crystals at temperaturesup to the melting point, Journal of Applied Physics 90(2001) 136–143.[Crossref]
  • [9] K. Schulz, D. Dickel, S. Schmitt, S. Sandfeld, D. Weygand,P. Gumbsch, Analysis of dislocation pile-ups usinga dislocation-based continuum theory, Modelling and Simulationin Materials Science and Engineering 22 (2014) 025008.
  • [10] S. P. Fitzgerald, S. Aubry, S. L. Dudarev, W. Cai, Dislocation dynamicssimulation of frank-read sources in anisotropic alphairon, Modelling and Simulation in Materials Science and Engineering20 (2012) 045022.
  • [11] H. M. Zbib, M. Rhee, J. P. Hirth, On plastic deformation and thedynamics of 3d dislocations, International Journal of MechanicalSciences 40 (1998) 113–127.[Crossref]
  • [12] L. P. Kubin, G. Canova, The modeling of dislocation patterns,Scripta Metallurgica 27 (1992) 957–962.[Crossref]
  • [13] C. Zhou, S. B. Biner, R. LeSar, Discrete dislocation dynamicssimulations of plasticity at small scales, Acta Materialia 58(2010) 1565–1577.[Crossref]
  • [14] Z. Q. Wang, I. J. Beyerlein, R. LeSar, Plastic anisotropy in fccsingle crystals in high rate deformation, International Journalof Plasticity 25 (2009) 26–48.[Crossref]
  • [15] R. N. Yellakara, Z. Wang, A three-dimensional dislocation dynamicsstudy of the effects of grain size and shape on strengtheningbehavior of fcc cu, Computational Materials Science 87(2014) 253–259.[Crossref]
  • [16] R. N. Yellakara, Z. Wang, A three-dimensional dislocation dynamicsstudy of the effects of grain size and shape on strengtheningbehavior of fcc cu, Computational Materials Science 87(2014) 253–259.[Crossref]
  • [17] X. Shi, L. Dupuy, B. Devincre, D. Terentyev, L. Vincent, Interactionof 100 dislocation loops with dislocations studied bydislocation dynamics in alpha-iron, Journal of NuclearMaterials460 (2015) 37–43.
  • [18] S. Gao, M. Fivel, A.Ma, A. Hartmaier, Influence of misfit stresseson dislocation glide in single crystal superalloys: A threedimensionaldiscrete dislocation dynamics study, Journal of theMechanics and Physics of Solids 76 (2015) 276–290.[Crossref]
  • [19] M. F. Horstemeyer, M. I. Baskes, S. J. Plimpton, Length scale andtime scale effects on plastic flow of fcc metals, Acta Materialia49 (2001) 4363–4374.[Crossref]
  • [20] M. F. Horstemeyer, M. I. Baskes, A. Godfrey, D. Hughes, A largedeformation atomistic study examining crystal orientation effectson the stress strain relationship, International Journal ofPlasticity 18 (2002) 203–229.[Crossref]
  • [21] L. Li, M. Han, Shearing single crystal copper in molecular dynamicssimulation at different temperatures, ComputationalMaterials Science 87 (2014) 145–149.[Crossref]
  • [22] M. Soleymani, M. H. Parsa, H. Mirzadeh, Molecular dynamicssimulation of stress field around edge dislocations in aluminum,Computational Materials Science 84 (2014) 83–96.[Crossref]
  • [23] R. Komanduria, N. Chandrasekaran, L. Raff, Molecular dynamicssimulation of uniaxial tension of some single-crystal cubic metalsat nanolevel, International Journal of Mechanical Sciences43 (2001) 2237–2260.[Crossref]
  • [24] C. Cui, H.G.Beom, Molecular dynamics simulations of edgecracks in copper and aluminum single crystals, Materials Science& Engineering, A 609 (2014) 102–109.
  • [25] P.-H. Sung, T.-C. Chen, Studies of crack growth and propagationof single-crystal nickel by molecular dynamics, ComputationalMaterials Science 102 (2015) 151–158.[Crossref]
  • [26] A. Keyhani, M. Goudarzi, S. Mohammadi, R. Roumina, Xfem–dislocation dynamics multi-scale modeling of plasticity andfracture, Computational Materials Science 104 (2015) 98–107.[Crossref]
  • [27] Y. Gao, Z. Liu, X. You, Z. Zhuang, A hybrid multiscale computationalframework of crystal plasticity at submicron scales, ComputationalMaterials Science 49 (2010) 672–681.[Crossref]
  • [28] C. Hamelin, B. Diak, A. Pilkey, Multiscale modelling of the inducedplastic anisotropy in bcc metals, International Journal ofPlasticity 27 (2011) 1185–1202.[Crossref]
  • [29] M. A. Shehadeh, H. M. Zbib, T. D. D. L. Rubia, Modelling the dynamicdeformation and patterning in fcc single crystals at highstrain rates: dislocation dynamics plasticity analysis, PhilosophicalMagazine 85 (2005) 1667–1685.[Crossref]
  • [30] N. N. Kumar, P. Durgaprasad, B. Dutta, G. Dey, Modeling of radiationhardening in ferritic/martensitic steel using multi-scaleapproach, ComputationalMaterials Science 53 (2012) 258–267.
  • [31] D. Li, H. Zbib, X. Sun, M. Khaleel, Predicting plastic flowand irradiationhardening of iron single crystal with mechanism-basedcontinuum dislocation dynamics, International Journal of Plasticity52 (2014) 3–17.[Crossref]
  • [32] H. Lim, L. M. Hale, J. A. Zimmerman, C. C. Battaile, C. R.Weinberger, A multi-scale model of dislocation plasticityin alpha-fe: Incorporating temperature, strain rateand non-schmid effects, International Journal of Plasticityhttp://dx.doi.org/10.1016/j.ijplas.2014.12.005.[Crossref]
  • [33] V. Péron-Lührs, F. Sansoz, A. Jérusalem, L. Noels, Multiscalecomputational modeling of deformation mechanics and intergranularfracture in nanocrystalline copper, Computational MaterialsScience 90 (2014) 253–264.[Crossref]
  • [34] Y. Lee, C. Basaran, A multiscale modeling technique for bridgingmolecular dynamics with finite element method, Journal ofComputational Physics 253 (2013) 64–85.[Crossref]
  • [35] S. Groh, E. B. Marin, M. F. Horstemeyer, H. M. Zbib, Multiscalemodeling of the plasticity in an aluminum single crystal, InternationalJournal of Plasticity 25 (2010) 1456–1473.[Crossref]
  • [36] H.-J. Chang, M. Fivel, D. Rodney, M. Verdier, Multiscale modellingof indentation in fcc metals: From atomic to continuum,Comptes Rendus Physique 11 (2010) 285–292.[Crossref]
  • [37] D. L. McDowell, A perspective on trends in multiscale plasticity,International Journal of Plasticity 26 (2010) 1280–1309.[Crossref]
  • [38] U. F. Kocks, A. S. Argon, M. F. Ashby, Thermodynamics and kineticsof slip, Progress in Material Science 19 (1975) 1–291.
  • [39] E. B. Marin, On the formulation of a crystal plasticity model,Sandia National Laboratories, CA, SAND2006-4170.
  • [40] E. Marin, P. Dawson, On modeling the elasto-viscoplastic responseof metals using polycrystal plasticity, Computer Methodsin Applied Mechanics and Engineering 165 (1998) 1–21.[Crossref]
  • [41] U. F. Kocks, H. Mecking, Physics and phenomenology of strainhardening: the fcc case, Progress inMaterial Science 48 (2003)171–273.
  • [42] G. Taylor, Plastic strain in metals, Journal of the Institute of Metals62 (1938) 307–324.
  • [43] G. Taylor, Analysis of plastic strain in a cubic crystal., In:Lesels, J.M. (Ed.), Stephen Timoshenko 60th Anniversary Volume.MacMillan, New York (1938) 218–224.
  • [44] U. F. Kocks, A. Argon, M. Ashby, Thermodynamics and kineticsof slip, Progress in Material Science 19 (1975) 1–291.
  • [45] R. Asaro, A. Needleman, Texture development and strain hardeningin rate dependent polycrystals, Acta Metallurgica 33(1985) 923–953.[Crossref]
  • [46] C. A. Bronkhorst, S. Kalidindi, L. Anand, Polycrystalline plasticityand the evolution of crystallographic texture in fcc metals,Philosophical Transactions of the Royal Society of London 341(1992) 443–477.
  • [47] M. Grujicic, S. Batchu, Crystal plasticity analysis of earing indeep-drawn offic copper cups, Journal of Materials Science 37(2002) 753–764.[Crossref]
  • [48] A. Cottrell, R. Stokes, Effects of temperature on the plastic propertiesof aluminiumcrystals, Proceedings of the Royal Society ofLondon A 233 (1955) 17–34.
  • [49] E. Nadgornyi, Dislocation dynamics and mechanical propertiesof crystals, Progress in Material Science 31 (1988) 1–530.
  • [50] S. Rawat, S. Chandra, V. M. Chavan, S. Sharma, M. Warrier,S. Chaturvedi, R. J. Patel, Integrated experimental and computationalstudies of deformation of single crystal copper at highstrain rates, Journal of Applied Physics 116 (2014) 213507.[Crossref]
  • [51] S. Olmsted, J. L. Hector, W. Curtin, R. Clifton, Atomistic simulationsof dislocation mobility in al, ni and al/mg alloys, Modellingand Simulation in Materials Science and Engineering 13(2005) 371–388.
  • [52] S. Plimpton, Fast parallel algorithms for short-range moleculardynamics, Journal of Computational Physics 117 (1) (1995) 1–19.[Crossref]
  • [53] M. S. Daw, M. I. Baskes, Embedded atom method-derivation andapplication to impurities and surfaces and other defects in metals,Physical Review B 50 (1984) 6443–6453.[Crossref]
  • [54] S. M. Foiles, M. I. Baskes, M. S. Daw, A study of low temperatureheat capacity anomalies in bimetallic alloy clusters usingj-walking monte carlo methods, Physical Review B 33 (1986)7983–7991.[Crossref]
  • [55] Y. N. Osetsky, D. J. Bacon, An atomic-level model for studying thedynamics of edge dislocations in metals, Modelling and SimulationinMaterials Science and Engineering 11 (2003) 427–446.
  • [56] H. Hakkinen, S.Makinen, M.Manninen, Edge dislocations in fccmetals: Microscopic calculations of core structure and positronstates in aluminium and copper, Physical Review B 41 (18)(1990) 12441–12453.[Crossref]
  • [57] V. V. Bulatov, L. L. Hsiung, M. Tang, A. Arsenlis, M. C. Bartelt,W. Cai, J. N. Florando, M. Hiratani, M. Rhee, G. Hommes, T. G.Pierce, T. D. D. L. Rubia, Dislocation multi-junctions and strainhardening, Nature 440 (2006) 1174–1178.
  • [58] P. Guyot, J. E. Dorn, A critical review on the peierls mechanism,Canadian Journal of Physics 45 (1967) 983–1016.[Crossref]
  • [59] W. F. Greenman, T. V. Jr., D. S. Wood, Dislocation mobility in copper,Journal of Applied Physics 38 (1967) 3595–3603.[Crossref]
  • [60] K. D. Fusenig, E. Nembach, Dynamic dislocation effects inprecipitation hardened materials, Acta Metallurgica 41 (1993)3181–3189.[Crossref]
  • [61] A. Y. Kuksin, A. V. Yanilkin, Atomistic simulation of the motion ofdislocations in metals under phonon drag conditions, Physicsof the Solid State 55 (2013) 1010–1019.[Crossref]
  • [62] H. Mecking, U. F. Kocks, Kinetics of flow and strain hardening,Acta Metallurgica 29 (1981) 1865–1875. [Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_pmd-2015-0001
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.