Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 21 | 4 | 228-233

Article title

Effects of Explosive Type Strength Training on Selected Physical and Technical Performance Characteristics in Middle Distance Running - a Case Report

Content

Title variants

Languages of publication

EN

Abstracts

EN
Introduction. Distance running performance is a simple function of developing high speeds and maintaining this speed as long as possible. Thus a correct running technique becomes an important component of performance. Technique is effective if the competitor can reach a better performance result with the same or lower energy consumption. The purpose of this investigation was to examine a six weeks application explosive type strength training on lower extremities power and maximum speed performance improvement in order to facilitate running technique in sub-elite male middle-distance runner. Material and methods. A sub-elite runner performed twice a week special exercises and running drills. He completed a pre and post-training jumping (SJ, CMJ, standing long jump, standing five jump) and speed (20 m from standing and flying start) field tests. For kinematical analysis, a video (SIMI Motion System) of a 10 m sprint from a 20 m flying start was collected. Results. Improvement occurred in all measurements but strong changes were evident in the 10 m from 20 flying start and in stride frequency from 3.90 to 4.01 Hz, due to decreasing of ground contact time from 160 to 156 ms. No strong evidence in the participant's running technique changes. Conclusion. This proved that six weeks of dynamic type strength program seems to improve neuromuscular characteristics of running speed and explosive power and no changes in running technique.

Publisher

Year

Volume

21

Issue

4

Pages

228-233

Physical description

Dates

online
1 - 3 - 2015
received
19 - 11 - 2014
accepted
8 - 11 - 2014

Contributors

  • The University School of Physical Education in Wroclaw, Faculty of Physical Education, Department of Athletics and Gymnastics
  • The University School of Physical Education in Wroclaw, Faculty of Physical Education, Department of Athletics and Gymnastics
  • The University School of Physical Education in Wroclaw, Faculty of Physical Education, Department of Athletics and Gymnastics

References

  • 1. Yasushi E., Michiyoshi A., Hidetaka O., Norihisa F. (1999). Running technique in long distance running and the effectiveness of mechanical energy utilization. Japanese Journal of Biomechanics in Sports & Exercise 3(1) 12-19.
  • 2. Williams K.R., Cavanagh P.R., Ziff J.L. (1991). Biomechanical studies of elite female distance runner. International Journal of Sports Medicine 8(2), 107-118.
  • 3. Bushnell T., Hunter I. (2007). Differences in technique between sprinters and distance runners at equal and maximal speeds. Sports biomechanics 6(3), 261-268.[WoS][Crossref]
  • 4. Novacheck T.F. (1998). The biomechanics of running. Gait Posture 7(1), 77-95.[PubMed][WoS][Crossref]
  • 5. Nummela A., Rusko H., Mero A. (1994). EMG activities and ground reaction force during fatigued and nonfatigued sprinting. Medicine and Science in Sports and Exercises 26(5), 605- 609.
  • 6. Cavanagh P.R., Kram R. (1990). Stride length in distance running: velocity, body dimensions, and added mass effects. In P.R. Cavanagh (ed.), Biomechanics of distance running (pp. 35-63). Illinois: Human Kinetic Books.
  • 7. Brüggemann G.P., Koszewski D., Müller H. (1997). Biomechanical research project: Athens 1997, final report. Oxford: Meyer & Meyer Sport, 12-41.
  • 8. Coh M., Dolenec A., Jost B. (1998). Kinematic and dynamic structure of the sprinting stride of top female sprinters. Biology and Sport 4, 237-243.
  • 9. Mackala K. (2007). Optimisation of performance through kinematic analysis of the different phases of the 100 meters. New Studies in Athletics 22, 7-16.
  • 10. Enomoto Y., Kadano H., Suzuki Y., Chiba T., Koyama K. (2008). Biomechanical analysis of the medalists in the 10,000 meters at the 2007 World Championships in Athletics. New Studies in Athletics 3, 61-66.
  • 11. Schmidtbleicher D. (1985). Strength training. Part 1. Classification of methods. Sports: Science Periodical on Research and Technology in Sport 8, 1-8.
  • 12. Radford P.F. (1990). Sprinting. In T. Reilly, N. Secher, P. Snell, C. Williams (eds.), Physiology of Sport (pp.71-99). London: E. & F.N. Spon.
  • 13. Mero A., Komi P.V., Gregor R.J. (1992). Biomechanics of sprint running. Sport Medicine 13, 376-392.[Crossref]
  • 14. Siff M.C., Verkhoshansky Y.V. (1996). Supertraining: special strength training for sporting excellence. Pittsburgh: Sports Support Syndicate.
  • 15. Martin D.E., Coe P.N. (1997). Better training for distance runners. Human Kinetics, Ilinois: Champaign.
  • 16. Hakkinen K., Alen M., Kraemer W.J., Gorostiga E., Izquierdo M. et al. (2003). Neuromuscular adaptations during concurrent strength and endurance training versus strength training. European Journal of Applied Physiology 89, 42-52.[WoS][Crossref]
  • 17. Weyannd P.G., Sternlight D.B., Bellizzi M.J., Wright S. (2001). Faster top running speeds are achieved with greater ground forces not more rapid leg movement. Journal of Applied Physiology 89(5), 1991-1999.
  • 18. Johnston R.E., Quinn T.J., Kertzer V., Vroman N.B. (1997). Strength training in female distance runners: impact on running economy. Journal of Strength and Conditioning Research 11, 224-229.
  • 19. Paavolainen L., Hakkinen K., Hamalainen A., Nummela A., Rusko H. (1999). Explosive-strength training improves 5-km running time by improving economy and muscle power. Jour-nal of Applied Physiology 86, 1527-1533.
  • 20. Spurrs R.W., Murphy A.J., Watsford M.L. (2003). The effect of plyometric training on distance running performance. European Journal of Applied Physiology 89(1), 1-7.[Crossref]
  • 21. Turner A.M., Owings M., Schwane J.A. (2003). Improvement in running economy after 6 weeks of plyometric training. Journal of Strength Conditioning Research 17(1), 60-67.
  • 22. Saunders P.H., Telford R.D., Pyne D.B., Petola E.M., Cunningham R.B. et al. (2006). Short - term plyometric training improves running economy in highly trained middle and long distance runner. Journal of Strength and Conditioning Research 20(4), 947-954.
  • 23. Daniels J. (1985). A physiologist's view of running economy. Medicine Science of Sports and Exercises 17, 322-338.
  • 24. Dalleau G., Belli A., Bourdin M., Lacour J.R. (1998). The spring-mass model and the energy cost on treadmill running. European Journal of Physiology 77, 257-263.[Crossref]
  • 25. Dumke C.L., Pfaffenroth C.M., McBride J.M., McCauley G.O. (2010). Relationship between muscle strength, power and stiffness and running economy in trained male runners. International Journal of Sports Physiology and Performance 5, 249-261.
  • 26. Kraemer W.J., Deschenes M.R., Fleck S.J. (1988). Physiological adaptations to resistance exercise. Implications for athletic conditioning. Sports Medicine 6, 246-256.[Crossref]
  • 27. Sale D.G. (1988). Neural adaptation to resistance training. Medicine and Science in Sports and Exercise 20, 135-145.[Crossref]
  • 28. Abernethy P.J., Jurimae J., Logan P.A., Taylor A.W., Thayer R.E. (1994). Acute and chronic response of skeletal muscle to resistance exercise. Sports Medicine 17, 22-38.[Crossref]
  • 29. Tanaka H., Swensen T. (1998). Impact of resistance training on endurance performance. A new form of cross-training? Sports Medicine 25, 191-200.[Crossref]
  • 30. Conley D.L., Krahenbuhl G.S. (1980). Running economy and distance running performance of highly trained athletes. Medicine Science of Sports and Exercises 12, 357-360.
  • 31. Sinnett A.M., Berg K., Latin R.W., Noble J.M. (2001). The relationship between field tests of anaerobic power and 10 km run performance. Journal of Strength and Conditioning Research 15(4), 405-412.
  • 32. Komi P.V. (1984). Physiological and biomechanical correlates of muscle functions: Effects of muscle structure and stretch-shortening cycle on force and speed. In R.I. Terjung (ed.), Exercises and Sport Science Reviews (pp. 81-121). Lexington: MA Collamore Press
  • 33. Anderson F.C., Pandy M.G. (1993). Storage and utilization of elastic energy during jumping. Journal of Biomechanics 26, 1413-1427.[Crossref]
  • 34. Cornu C., Almeida Silveria M.I., Goubel F. (1997). Influence of plyometric training on the mechanical impedance of human ankle joint. European Journal of Applied Physiology 76, 282-288.[Crossref]
  • 35. Kyrolainen H., Kivela R., Koskinen S. (2003). Interrelationship between muscle structure, muscle strength and running economy. Medicine Science of Sports and Exercises 35, 41-45.
  • 36. Scholz M.N., Bobert M.F., van Soest A.J., Clark J.R., van Heerden J. (2006). Running biomechanics: Shorter heels, better economy. Journal of Experimental Biology 211, 3266-3271.[WoS]
  • 37. Noakes T. (1991). Lore of running. Leisure Press. Illinois: Champaign:
  • 38. Cavanagh P.R. (1987). The biomechanics of lower extremity action in distance running. Foot and Ankle 7(4), 197-217.[PubMed]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_pjst-2015-0003
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.