PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 17 | 3 | 118-123
Article title

Hydrodynamics of Pilot Plant Scale Airlift Reactor in Presence of Alcohols

Content
Title variants
Languages of publication
EN
Abstracts
EN
The overall gas hold-up of a pilot plant scale internal loop airlift reactor was studied in presence of different alcohols in varied concentration. It has been observed that these simple alcohols can enhance overall gas hold-up of the airlift assembly possibly due to formation of protective thin layer over smaller gas bubbles thereby reducing chance of their coalescence. As the alcohols can be used as food source for the micro organisms present in the system, this green and environment friendly process have potential to replace usage of hazardous surfactants often used for enhancing overall hold-up in order to obtain desired mass transfer characteristics. An empirical relationship encompassing overall gas hold-up of the reactor as a function of superficial gas velocity and alcohol concentration is also developed.
Publisher

Year
Volume
17
Issue
3
Pages
118-123
Physical description
Dates
published
1 - 9 - 2015
online
19 - 9 - 2015
Contributors
author
  • Maharashtra Institute of Technology, Department of Petroleum and Petrochemical Engineering, Paud Road, Kothrud, Pune – 411 038, India, somnath.nandi@mitpune.edu.in
  • Maharashtra Institute of Technology, Department of Petroleum and Petrochemical Engineering, Paud Road, Kothrud, Pune – 411 038, India
References
  • 1. Sikula, I., Jurascik, M. & Markos, J. (2007). Modeling of fermentation in an internal loop airlift bioreactor. Chem. Eng. Sci. 62(18–20), 5216–5221. DOI: 10.1016/j.ces.2007.01.050.[WoS][Crossref]
  • 2. Zhao, Z., Jiang, G., Jiang, S. & Ding, F. (2009). Integrated anaerobic/aerobic biodegradation in an internal airlift loop reactor for phenol wastewater treatment. Korean J. Chem. Eng. 26(6), 1662–1667. DOI: 10.1007/s11814-009-0242-3.[Crossref]
  • 3. Yuan, X., Kumar, A., Sahu, A.K. & Ergas, S.J. (2011). Impact of ammonia concentration on Spirulina platensis growth in an airlift photobioreactor. Biores. Technol. 102(3), 3234–3239. DOI: 10.1016/j.biortech.2010.11.019[Crossref]
  • 4. Saravanan, P., Pakshirajan, K. & Saha, P. (2011). Studies on growth kinetics of predominantly Pseudomonas sp. in internal loop airlift bioreactor using phenol and m-cresol. Korean J. Chem. Eng. 28(7), 1550–1555, DOI: 10.1007/s11814-010-0531-x.[WoS][Crossref]
  • 5. Chisti, M.Y. (1989). Airlift bioreactors (1st ed.). Elsevier, London.
  • 6. Blazej, M., Kisa, M. & Markos, J. (2004). Scale influence on the hydrodynamics of an internal loop airlift reactor, Chem. Eng. & Proc. 43(12), 1519–1527 DOI: 10.1016/j.cep.2004.02.003.[Crossref]
  • 7. Olivieri, G., Marzocchella, A., Ommen, J.R.V. & Salatino, P. (2007). Local and global hydrodynamics in a two-phase internal loop airlift. Chem. Eng. Sci. 62(24), 7068–7077. DOI: 10.1016/j.ces.2007.08.029.[WoS][Crossref]
  • 8. Nandi, S., Narayan, A., Jha, M.K. & Jaju, S. (2008). Hydrodynamic study of airlift reactor, presented in CHEMCON 2008, 27–30 December 2008 (Ref: TP 63, available in CD ROM), Punjab University, India.
  • 9. Heijnen, J.J., Hols, J., Lans, R.G.J.M, Leeuwen, H.L.J.M., Mulder, A. & Wetevrede, R. (1997). A simple hydrodynamic model for the liquid circulation velocity in a full-scale two- and three-phase internal airlift reactor operating in the gas recirculation regime. Chem. Eng. Sci. 52(15), 2527–2540. DOI: 10.1016/S0009-2509(97)00070-5.[Crossref]
  • 10. Moraveji, M.K., Sajjadi, B. & Davarnejad, R. (2011). Gas-liquid hydrodynamics and mass transfer in aqueous alcohol solutions in split cylinder airlift reactor. Chem. Eng. Technol. 34(3), 465–474. DOI: 10.1002/ceat.201000373.[Crossref][WoS]
  • 11. Nandi, S. (2010). Biodesulfurization of hydro-desulfurized diesel in airlift reactor. J. Sci. & Ind. Res. 69(7), 543–547.
  • 12. Irani, Z.A., Mehrnia, M.R., Yazdian, F. Soheily, M., Mohebali, G. & Rasekh, B. (2011). Analysis of petroleum biodesulfurization in an airlift bioreactor using response surface methodology. Biores. Technol. 102(22), 10585–10591. DOI: 10.1016/j.biortech.2011.08.120.[Crossref]
  • 13. Nuhu, A.A. (2013). Biocatalytic desulfurization of fossil fuels: a mini review. Rev. Environ. Sci. Biotechnol. 12(1), 9–23. DOI: 10.1007/s11157–012–9267-x.[Crossref]
  • 14. Singh, A., Singh, B. & Ward, O. (2012). Potential applications of bioprocess technology in petroleum industry. Biodegradation 23(6), 865–880. DOI: 10.1007/s10532-012-9577-2.[Crossref][WoS]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_pjct-2015-0059
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.