Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 17 | 3 | 95-99

Article title

Adsorption of penicillin by decaffeinated tea waste

Content

Title variants

Languages of publication

EN

Abstracts

EN
Removal of penicillin has been investigated using decaffeinated tea waste (DCTW). Decaffeination of tea waste was investigated using different methods. Results indicate that ozonation was the most effective process for removal of penicillin. Batch adsorption experiments were completed at various temperatures (20, 30, and 40°C), DCTW dosages (2, 4, 6, 8, and 10 g per 250 mL), penicillin concentrations (4, 10, and 14 mg/L), and pH (3, 7, and 10) conditions. Studies showed that adsorption reaches equilibrium within 40 min. The main factor affecting adsorption of penicillin was the solution pH, with maximum adsorption occurring at pH 3. Higher adsorbent dosages and lower penicillin concentrations also resulted in higher percentages of penicillin removal. Results show that data obeyed the pseudo-first-order kinetic and Freundlich isotherm models. This process proves that low-cost DCTW could be used as a high performance adsorbent for removing penicillin from aqueous solutions.

Keywords

Publisher

Year

Volume

17

Issue

3

Pages

95-99

Physical description

Dates

published
1 - 9 - 2015
online
19 - 9 - 2015

Contributors

  • Islamic Azad University, Department of Chemistry, Ahar Branch, Ahar, Iran
author
  • Islamic Azad University, Department of Chemistry, Tabriz Branch, Tabriz, Iran
  • Islamic Azad University, Department of Chemistry, Ahar Branch, Ahar, Iran

References

  • 1. Ania, C.O., Pelay o, J.G. & Bandosz, T. J. (2011). Reactive adsorption of penicillin on activated carbons. Adsorption 17, 421–429. DOI: 10.1007/s10450-010-9271-9.[Crossref][WoS]
  • 2. Choi, K.J., Kim, S.G. & Kim, S.H. (2008). Removal of antibiotics by coagulation and granular activated carbon Filtration. J. Hazard. Mater. 151, 38–43. DOI: 10.1016/j.jhazmat.2007.05.059.[WoS][Crossref]
  • 3. Al-Ahmad, A., Daschner, F.D. & Kummerer, K. (1999). Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfamethoxazole and inhibition of waste water bacteria. Arch. Environ. Contam. Toxicol. 37, 158–163. DOI: 10.1007/s002449900501.[Crossref]
  • 4. Zümriye, A. & Özlem, T. (2005). Application of biosorption for penicillin G removal: comparison with activated carbon. Process Biochem. 40, 831–847. DOI: 10.1016/j.procbio.2004.02.014.[Crossref]
  • 5. Chaubal, M.V., Payne, G.F., Reynolds, C.H. & Albright, R.L. (1995). Equilibria for the adsorption of antibiotics onto neutral polymeric sorbents: Experimental and modeling studies. Biotechnol. Bioeng. 47, 215–226. DOI: 10.1002/bit.260470213.[Crossref]
  • 6. Zhang, H., Yu, X., Chen, L., Jing, Y. & Ge, Z. (2010). Study of Ni-63 adsorption on NKF-6 zeolite. J. Environ. Radioact. 101, 1061–1069. DOI: 10.1016/j.jenvrad.2010.08.009.[Crossref]
  • 7. Zuorro, A. & Lavecchia, R. (2010). Adsorption of Pb(II) on Spent Leaves of Green and Black Tea. Am. J. Appl. Sci. 7, 153–159. DOI: 10.1016/j.procbio.2005.02.004.[Crossref]
  • 8. Chen, C. & Wang, J. (2009). Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 27, 195–226. DOI: 10.1016/j.biotechadv.2008.11.002.[WoS][Crossref]
  • 9. Arshad Khosa, M., Wua, J. & Ullah, A. (2013). Chemical modification, characterization, and application of chicken feathers as novel biosorbents. RSC Adv. 3, 20800–20810. DOI: 10.1039/C3RA43787F.[Crossref][WoS]
  • 10. Srinivasan, A. & Viraraghavan, T. (2010). Decolorization of dye wastewaters by biosorbents: A review. J. Environ. Manage. 91, 1915–1929. DOI: 10.1016/j.jenvman.2010.05.003.[Crossref]
  • 11. Hameed, B.H. (2009). Spent tea leaves: A new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions. J. Hazard. Mater. 161, 753–759. DOI: 10.1016/j.jhazmat.2008.04.019.[Crossref]
  • 12. Uddin, M.T., Islam, M.A., Mahmud, S. & Rukanuzzaman, M. (2009). Adsorptive removal of methylene blue by tea waste. J. Hazard. Mater. 164, 53–60. DOI: 10.1016/j.jhazmat.2008.07.131.[Crossref]
  • 13. Yang, X. & Cui, X. (2013). Adsorption characteristics of Pb (II) on alkali treated tea residue. Water Resour. Ind. 3, 1–10. DOI: 10.1016/j.wri.2013.05.003.[Crossref]
  • 14. Amarasinghe, B.M.W.P.K. & Williams, R.A. (2007). Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem. Eng. J. 132, 299–309. DOI: 10.1016/j.cej.2007.01.016.[Crossref]
  • 15. Cay, S., Uyanik, A. & Ozasik, A. (2004). Single and binary component adsorption on copper (II) and cadmium (II) from aqueous solution using tea industry waste. Sep. Purif. Technol. 38, 273–280. DOI: 10.1016/j.seppur.2003.12.003.[Crossref]
  • 16. Wasewar, K.L., Atif, M., Prasad, B. & Mishra, I.M. (2009). Batch adsorption of Zn on tea factory waste. Desalination 244, 66–71. DOI: 10.1016/j.desal.2008.04.036.[Crossref][WoS]
  • 17. Mohammad, A.H. & Md, S.A. (2012). Adsorption kinetics of Rhodamine-B on used black tea leaves. Iranian J. Environ. Health Sci. Eng. 9, 1–7. DOI: 10.1186/1735-2746-9-2.[WoS][Crossref]
  • 18. Jeyakumar, R.P.S. & Chandrasekaran, V. (2014). Adsorption of lead(II) ions by activated carbons prepared from marine green algae: Equilibrium and kinetics studies. Inter. J. Indu. Chem. 5, 1–10. DOI:10.1186/2228-5547-5-2.[Crossref]
  • 19. Chen, D.Z., Zhang, J.X. & Chen, J.M. (2010). Adsorption of methyl tert-butyl ether using granular activated carbon: Equilibrium and kinetic analysis. Int. J. Environ. Sci. Tech. 7, 235–242. DOI: 10.1007/BF03326133.[WoS][Crossref]
  • 20. Pandey, P.K., Sharma, S.K. & Sambi, S.S. (2010). Kinetics and equilibrium study of chromium adsorption on zeolite NaX. Int. J. Environ. Sci. Tech. 7, 395–404. DOI: 10.1007/BF03326149.[Crossref]
  • 21. Tseng, R.L. & Wu, F.C. (2009). Analyzing concurrent multi-stage adsorption process of activated carbon with a favorable parameter of Langmuir equation. J. Taiwan Inst. Chem. E. 40, 197–204. DOI: 10.1016/j.jtice.2008.09.002.[WoS][Crossref]
  • 22. Ho, Y.S., Porter, J.F. & Mckay, G. (2002). Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water Air Soil Poll. 141, 1–33. DOI: 10.1023/A:1021304828010.[Crossref]
  • 23. Ahmed Dhahir, S. & AL-Saade, K.A. (2013). Adsorption study of rhodamin b dye on iraqi bentonite and modified bentonite by nanocompounds TiO ZnO, Al2O3, sodium dodecyl sulfate. Am. J. Environ. Sci. 9, 269–279. DOI: 10.3844/ajessp.2013.269.279.[Crossref]
  • 24. Zheng, H., Liu, D., Zheng, Y., Liang, S. & Liu, Z. (2009). Sorption isotherm and kinetic modeling of aniline on Cr-bentonite. J. Hazard. Mater. 167, 141–147. DOI: 10.1016/j.jhazmat.2008.12.093.[Crossref][WoS]
  • 25. Tosun, I. (2012). Ammonium Removal from Aqueous Solutions by Clinoptilolite: Determination of Isotherm and Thermodynamic Parameters and Comparison of Kinetics by the Double Exponential Model and Conventional Kinetic Models. Int. J. Environ. Res. Pub. Health. 9, 970–984. DOI: 10.3390/ijerph9030970.[Crossref][WoS]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_pjct-2015-0056
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.