Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 17 | 3 | 24-28

Article title

The degradation of kraft lignin during hydrothermal treatment for phenolics

Content

Title variants

Languages of publication

EN

Abstracts

EN
Kraft lignin was hydrothermally depolymerized at low temperature/short time in water for producing value-added phenolics. The effects of residence time (15, 60 min) and reaction temperature (130, 180, 230ºC) on yields of oils and phenolic compounds were studied in detail. Total oil yield was found to range between 7% and 10%. The compositions of oils were analyzed by GC-MS to confirm the main compound to be guaiacol (2-methoxy phenol) in the range of 12–55% of oil depending on different reaction conditions. The most interesting was the finding that maximum value of total oil yield (10% of kraft lignin) and guaiacol amount (55% of oil) was obtained at 130ºC/15, 60 min which is a low reaction temperature/short time, while the residual kraft lignins were analyzed by FTIR with respect to the conversion mechanism of kraft lignin by this process.

Publisher

Year

Volume

17

Issue

3

Pages

24-28

Physical description

Dates

published
1 - 9 - 2015
online
19 - 9 - 2015

Contributors

author
  • Sichuan University of Science and Engineering, Material and Chemical Engineering Institute, Zigong, 643000, China
author
  • Sichuan University of Science and Engineering, Material and Chemical Engineering Institute, Zigong, 643000, China
  • Nanjing Forestry University, Jiangsu Provincial Key Laboratory of Pulp and Paper Science and Technology, Nanjing, 210037, China
  • Kunming University of Science and Technology, P.O. Box A302-12, Building No.5, XinyingYuan, No.50, Huancheng East Road, Kunming, 650051, China (Corresponding affiliation)
  • Guangxi University, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Nanning, 530004, China
  • Sichuan University of Science and Engineering, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Zigong, 643000, China
  • Huaiyin Normal University, Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaian, 223300, China
  • Tianjin University of Science and Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin, 300457, China
  • State Key Laboratory of New Ceramics and Fine Processing of Tsinghua University, Beijing, 100084, China

References

  • 1. Du, X., Gellerstedt, G. & Li, J. (2013). Universal fractionation of lignin–carbohydrate complexes (LCCs) from lignocellulosic biomass: an example using spruce wood. The Plant J. 74, 328–338. DOI: 10.1111/tpj.12124.[Crossref]
  • 2. Calvo-Flores, F.G. & Dobado, J.A. (2010). Lignin as renewable raw material. ChemSusChem 3, 1227–1235. DOI: 10.1002/CSSC.201000157.[Crossref][WoS]
  • 3. Zhou, X.-F. (2014). Selective oxidation of kraft lignin over zeolite-encapsulated Co(II) [H4]salen and [H2]salen complexes. J. Appl. Polym. Sci. 131, 9594–9602. DOI: 10.1002/app.40809.[WoS][Crossref]
  • 4. Joffres, B., Laurenti, D., Charon, N., Daudin, A., Quignard, A. & Geantet, C. (2013). Thermochemical conversion of lignin for fuels and chemicals: A review. Oil Gas Sci. Technol. 68, 753–763. DOI: 10.2516/ogst/2013132.[Crossref]
  • 5. Babu, B.V. (2008). Biomass pyrolysis: a state-of-the-art review. Biofuels Bioprod. Bior. 2, 393–414. DOI: 10.1002/bbb.92.[Crossref][WoS]
  • 6. Murnieks, R., Kampars, V., Malins, K. & Apseniece, L. (2014). Hydrotreating of wheat straw in toluene and ethanol. Bioresour. Technol. 163, 106–111. DOI: 10.1016/j.biortech.2014.04.022.[Crossref][WoS]
  • 7. Pinkowska, H., Wolak, P. & Zocinska, A. (2012). Hydrothermal decomposition of alkali lignin in sub- and super-critical water. Chem. Eng. J. 187, 410–414. DOI: 10.1016/J.CEJ.2012.01.092.[Crossref][WoS]
  • 8. Horacek, J., Homola, F., Kubickova, I. & Kubicka, D. (2012). Lignin to liquids over sulfided catalysts. Catal. Today 179, 191–198. DOI: 10.1016/j.cattod.2011.06.031.[Crossref][WoS]
  • 9. Chimentao, R.J., Lorente, E., Gispert-Guirado, F., Medina, F. & Lopez, F. (2014). Hydrolysis of dilute acid-pretreated cellulose under mild hydrothermal conditions. Carbohyd. Polym. 111, 116–124. DOI: 10.1016/J.CARBPOL.2014.04.001.[Crossref][WoS]
  • 10. Demirbas, A. (2009). Biorefineries: current activities and future developments. Energy Convers. Manage. 50, 2782–2801. DOI: 10.1016/j.enconman.2009.06.035.[WoS][Crossref]
  • 11. Mafakheri, F. & Nasiri, F. (2014). Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions. Energ. Policy 67, 116–126. DOI: 10.1016/J.ENPOL.2013.11.071.[Crossref][WoS]
  • 12. Kang, S., Li, X., Fan, J. & Chang, J. (2013). Hydrothermal conversion of lignin: A review. Renew. Sust. Energ. Rev. 27, 546–558. DOI: 10.1016/J.RSER.2013.07.013.[Crossref]
  • 13. Kumar, S. & Gupta, R.B. (2009). Biocrude production from switch grass using subcritical water. Energ. Fuels 23, 5151–5159. DOI: 10.1021/ef900379p.[Crossref][WoS]
  • 14. dos Santos, P.S.B., Erdocia, X., Gatto, D.A. & Labidi, J. (2014). Characterisation of kraft lignin separated by gradient acid precipitation. Ind. Crops Prod. 55, 149–154. DOI: 10.1016/J.indcrop.2014.01.023.[Crossref][WoS]
  • 15. Jansson, Z.L. & Brannvall, E. (2014). Effect of kraft cooking conditions on the chemical composition of the surface and bulk of spruce fibers. J. Wood Chem.Technol. 34, 291–300. DOI: 10.1080/02773813.2013.872661.[WoS][Crossref]
  • 16. Crawford, R.L. & Pometto, A.L. (1988). Methods in enzymology. San Diego: Academic Press Inc.
  • 17. Karagöz, S., Bhaskar, T., Muto, A., Sakata, Y. & Uddin, Md.A. (2004). Low-temperature hydrothermal treatment of biomass: effect of reaction parameters on products and boiling point distributions. Energ. Fuel. 18, 234–241. DOI: 10.1021/ef030133g.[Crossref]
  • 18. Ye, Y., Fan, J. & Chang, J. (2012). Effect of reaction conditions on hydrothermal degradation of cornstalk lignin. J. Anal. Appl. Pyrol. 94, 190–195. DOI: 10.1016/J.JAAP.2011.12.005.[Crossref]
  • 19. Pala, M., Kantarli, I.C., Buyukisik, H.B. & Yanik, J. (2014). Hydrothermal carbonization and torrefaction of grape pomace: A comparative evaluation. Bioresour. Technol. 161, 255–262. DOI: 10.1016/J.BIORTECH.2014.03.052.[WoS][Crossref]
  • 20. Sakaki, T., Shibata, M., Miki, T., Hirosue, H. & Hayashi, N. (1996). Decomposition of cellulose in near-critical water and fermentabality of the product. Energ. Fuel. 10, 684–688.
  • 21. Wahyudiono, Sasaki, M. & Goto, M. (2009). Conversion of biomass model compound under hydrothermal conditions using batch reactor. Fuel 88, 1656–1664. DOI: 10.1016/J.FUEL.2009.02.028.[WoS][Crossref]
  • 22. Wahyudiono, Kanetake, T., Sasaki, M. & Goto, M. (2007). Decomposition of a lignin model compound under hydrothermal conditions. Chem. Eng. Technol. 30, 1113–1122. DOI: 10.1002/ceat.200700066.[WoS][Crossref]
  • 23. Toledano, A., Serrano, L. & Labidi, J. (2014). Improving base catalyzed lignin depolymerization by avoiding lignin repolymerization. Fuel 116, 617–624. DOI: 10.1016/j.fuel.2013.08.071.[Crossref][WoS]
  • 24. Nada, A.M.A., Yousef, M.A., Shaffei, K.A. & Salah, A.M. (1998). Infrared spectroscopy of some treated lignins. Polym. Degrad. Stabil. 62, 157–163.
  • 25. Kawamoto, H., Ryoritani, M. & Saka, S. (2008). Different pyrolytic cleavage mechanisms of β-ether bond depending on the side-chain structure of lignin dimers. J. Anal. Appl. Pyro. 81, 88–94. DOI: 10.1016/J.JAAP.2007.09.006.[WoS][Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_pjct-2015-0045
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.