Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 17 | 3 | 8-12

Article title

NOx photocatalytic degradation on gypsum plates modified by TiO2-N,C photocatalysts

Content

Title variants

Languages of publication

EN

Abstracts

EN
In presented studies the photocatalytic decomposition of NOx on gypsum plates modified by TiO2-N,Cphotocatalysts were presented. The gypsum plates were obtained by addition of 10 or 20 wt.% of different types of titanium dioxide, such as: pure TiO2 and carbon and nitrogen co-modified TiO2 (TiO2-N,C) to gypsum. TiO2-N,C photocatalysts were obtained by heating up the starting TiO2 (Grupa Azoty Zakłady Chemiczne Police S.A) in the atmosphere of ammonia and carbon at the temperature: 100, 300 i 600ºC. Photocatalyst were characterized by FTIR/DRS, UVVis/DR, BET and XRD methods. Moreover the compressive strength tests of modified gypsum were also done. Photocatalytic activity of gypsum plates was done during NOx decomposition. The highest photocatalytic activity has gypsum with 20 wt.% addition of TiO2-N,C obtained at 300ºC.

Keywords

Publisher

Year

Volume

17

Issue

3

Pages

8-12

Physical description

Dates

published
1 - 9 - 2015
online
19 - 9 - 2015

Contributors

  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environmental Engineering, Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Department of Sanitary Engineering, Piastów 50, 70-310 Szczecin, Poland
author
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environmental Engineering, Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environmental Engineering, Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environmental Engineering, Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environmental Engineering, Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environmental Engineering, Pułaskiego 10, 70-322 Szczecin, Poland

References

  • 1. Fujishima, A.X., Zhang & Tryk, D.A. (2007). Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup. Int. J. Hydrogen Energy 32(14), 2664–2672. DOI: 10.1016/j.ijhydene.2006.09.009.[WoS][Crossref]
  • 2. Lackhoff, M., Prieto, X., Nestle, N., Dehn, F. & Niessner, R. (2003). Photocatalytic activity of semiconductor-modified cement-influence of semiconductor type and cement angeing. Appl. Catal. B-Environ. 43(3), 205–216. DOI: 10.1016/S0926-3373(02)00303-X.[Crossref]
  • 3. Meng, T., Yu, Y., Qian, X., Zhan, S. & Qian, K. (2012). Effect of nano-TiO2 on the mechanical properties of cement mortar. Constr. Build. Mater. 29, 241–245. DOI: 10.1016/j.conbuildmat.2011.10.047.
  • 4. Beydoun, D., Amal, R., Low, G. & McEvoy, S. (1999). Role of nanoparticles in photocatalysis. J. Nanopart. Res. 1, 439–458. DOI: 10.1023/A:1010044830871.[Crossref]
  • 5. Hunger, M., Husken, G. & Brouwers, J. (2008). Photocatalysis applied to concrete products – part 1: principles and test procedure. Zkg. Int. 61, 77–85.
  • 6. Bolte, G. (2009). Innovative building materials-reduction of pollutants with TioCem. Zkg. Int. 62, 63–70.
  • 7. Toma, F.L., Bertrand, G., Klein, D. & Coddet, C. (2004). Photocatalytic removal of nitrogen oxides via titanium dioxide. Environ. Chem. Lett. 2(3), 117–121. DOI: 10.1007/s10311-004-0087-2.[Crossref]
  • 8. Carneiro, J.O., Teixeira, V., Martins, A.J., Mendes, M., Ribeiro, M. & Vieira, A. (2009). Surface properties of doped and undoped TiO2 thin films deposited by magnetron sputtering. Vacuum 83(10), 1303–1306. DOI: 10.1016/j.vacuum.2009.03.028.
  • 9. Rachel, A., Subrahmanyam, M. & Boule, P. (2002). Comparison of photocatalytic efficiencies of TiO2 in suspended and immobilized form for the photocatalytic degradation of nitrobenzenesulfonic acids. Appl. Catal. B-Environ. 37(4), 301–308. DOI: 10.1016/S0926-3373(02)00007-3.
  • 10. Boccaccini, A.R., Rossetti, M., Roether, J.A., Zein, S.H.S. & Ferraris M. (2009). Development of titania coatings on glass foams. Constr. Build. Mater. 23(7), 2554–2558. DOI: 10.1016/j.conbuildmat.2009.02.019.[Crossref][WoS]
  • 11. Ramirez, A.M., Demeestere, K., De Belie, N., Mäntylä, T. & Levänen, E. (2010). Titanium dioxide coated cementitious materials for air purifying purposes: preparation, characterization and toluene removal potential. Build. Environ. 45(4), 832–838. DOI: 10.1016/j.buildenv.2009.09.003.[WoS][Crossref]
  • 12. Lackhoff, M., Prieto, X., Nestle, N., Dehn, F. & Niessner, R. (2003). Photocatalytic activity of semiconductor-modified cement – influence of semiconductor type and cement ageing. Appl. Catal. B-Environ. 43(3), 205–216. DOI: 10.1016/S0926-3373(02)00303-X.[Crossref]
  • 13. Meng, T., Yu, Y., Qian, X., Zhan, S. & Qian, K. (2012). Effect of nano-TiO2 on the mechanical properties of cement mortar. Constr. Build. Mater. 29, 241–245. DOI: 10.1016/j.conbuildmat.2011.10.047.
  • 14. Yousefi, A., Allahverdi, A. & Hejazi, P. (2013). Effective dispersion of nano-TiO2 powder for enhancement of photocatalytic properties in cement mixes. Constr. Build. Mater. 41, 224–230. DOI: 10.1016/j.conbuildmat.2012.11.057.[WoS]
  • 15. Pereira, A., Palha, F., Brito, J. & Silvestre, J.D. (2011). Inspection and diagnosis system for gypsum plasters in partition walls and ceilings. Constr. Build. Mater. 25(4), 2146–2156. DOI: 10.1016/j.conbuildmat.2010.11.015.[WoS][Crossref]
  • 16. U.E., Directive 2008/50/EC of the European Parliament and of the Council on ambient air quality and cleaner air for Europe, Official Journal of the European Union, L152/1, 2008.
  • 17. Berglund, B., Brunekreef, B., Knoppel, H., Undvaij, T., Maroni, M., Mblhave, L. & Skov, P. (1991). Effects of Indoor Air Pollution on Human Health – Report no. 10, Commission of the European Communities, Luxembourg.
  • 18. Zhao, J. & Yang, X.D. (2003). Photocatalytic oxidation for indoor air purification: a literature review. Build. Environ. 38, 645–654. DOI: 10.1016/S0360-1323(02)00212-3.[Crossref]
  • 19. Todorova, N., Giannakopoulou, T., Karapati, S., Petridis, D., Vaimakis, T. & Trapalis, C. (2014). Composite TiO2/Clays Materials for Photocatalytic NOx Oxidation. Appl. Surf. Sci. DOI: 10.1016/j.apsusc.2014.07.020 (In press, Accepted Manuscript, Available online 12 July 2014).
  • 20. Kampa, M. & Castanas, E. (2008). Human health effects of air pollution. Environ. Pollut. 151, 362–367. DOI: 10.1016/j.envpol.2007.06.012.[Crossref]
  • 21. Kukadia, V. & Palmer, J. (1998). The effect of external atmospheric pollution on indoor air quality: a pilot study. Energy Build. 27, 223–230. DOI: 10.1016/S0378-7788(97)00044-3.[Crossref]
  • 22. Wu, Z., Wang, H., Liu, Y. & Gu, Z. (2008). Photocatalytic oxidation of nitric oxide with immobilized titanium dioxide films synthesized by hydrothermal method. J. Hazard. Mater. 151(1), 17–25. DOI: 10.1016/j.jhazmat.2007.05.050.[Crossref]
  • 23. Janus, M., Bubacz, K., Zatorska, J., Kusiak-Nejman, E., Czyżewski, A., Przepiórski, J. & Morawski, A.W. (2014). Induced self-cleaning properties towards Reactive Red 198 of the cement materials loaded with co-modified TiO2/N,C photocatalysts. React. Kinet. Mechanism Catal. In press, DOI: 10.1007/s11144-014-0749-4.[Crossref][WoS]
  • 24. Nguyen N.H. & Bai, H. (2014). Photocatalytic removal of NO and NO2 using titania nanotubes synthesized by hydrothermal method. J. Environ. Sci. 26, 1180–1187. DOI: 10.1016/S1001-0742(13)60544-6.[WoS][Crossref]
  • 25. Ballari, M.M, Yu, Q.L. & Brouwers, H.J.H. (2011). Experimental study of the NO and NO2 degradation by photocatalytically active concrete. Catal. Today. 161, 175–180, DOI: 10.1016/j.cattod.2010.09.028.[WoS][Crossref]
  • 26. Haruehansapong, S., Pulngern, T. & Chucheepsakul, S. (2013). Effect of the particle size of nanosilica on the compressive strength and the optimum replacement content of cement mortar containing nano-SiO2. Constr. Build. Material. 50, 471–477. DOI: 10.1016/j.conbuildmat.2013.10.002.[WoS][Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_pjct-2015-0042
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.