Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2015 | 17 | 2 | 103-111

Article title

Influence of the structural and surface properties on photocatalytic activity of TiO2:Nd thin films


Title variants

Languages of publication



Titanium dioxide thin films doped with the same amount of neodymium were prepared using two different magnetron sputtering methods. Thin films of anatase structure were deposited with the aid of Low Pressure Hot Target Magnetron Sputtering, while rutile coatings were manufactured using High Energy Reactive Magnetron Sputtering process. The thin films composition was determined by energy dispersive spectroscopy and the amount of the dopant was equal to 1 at. %. Structural properties were evaluated using transmission electron microscopy and revealed that anatase films had fibrous structure, while rutile had densely packed columnar structure. Atomic force microscopy investigations showed that the surface of both films was homogenous and consisted of nanocrystalline grains. Photocatalytic activity was assessed based on the phenol decomposition. Results showed that both thin films were photocatalytically active, however coating with anatase phase decomposed higher amount of phenol. The transparency of both thin films was high and equal to ca. 80% in the visible wavelength range. The photoluminescence intensity was much higher in case of the coating with rutile structure.









Physical description


1 - 6 - 2015
9 - 6 - 2015


  • Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11/17, 50-372 Wroclaw, Poland
  • Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11/17, 50-372 Wroclaw, Poland
  • Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11/17, 50-372 Wroclaw, Poland
  • Polish Academy of Sciences, Institute of Metallurgy and Materials Science, Reymonta 25, 30-059 Cracov, Poland
  • Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11/17, 50-372 Wroclaw, Poland
  • Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11/17, 50-372 Wroclaw, Poland
  • Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11/17, 50-372 Wroclaw, Poland


  • 1. Saif, M. & Abdel-Mottaleb, M.S.A. (2007). Titanium dioxide nanomaterial doped with trivalent lanthanide ions of Tb, Eu and Sm: Preparation, characterization and potential applications, Inorg. Chim. Acta 360, 2863-2874. DOI: 10.1016/j. ica.2006.12.052.[Crossref]
  • 2. Radecka, M., Gorzkowska-Sobaś, A., Zakrzewska, K. & Sobaś, P. (2004). Nanocermet TiO2:Au thin fi lm electrodes for wet electrochemical solar cells, Opto-Electron. Rev. 12, 53-56.
  • 3. Mazur, M., Wojcieszak, D., Domaradzki, J., Kaczmarek, D., Song, S. & Placido, F. (2013). TiO2/SiO2 multilayer as an antirefl ective and protective coating deposited by microwave assisted magnetron sputtering, Opto-Electron. Rev. 21(2), 233-238. DOI: 10.2478/s11772-013-0085-7.[Crossref]
  • 4. Comini, E., Ferroni, M., Guidi, V., Vomiero, A., Merli, P.G., Morandi, V., Sacerdoti, M., Della Mea, G. & Sberveglieri, G. (2005). Effects of Ta/Nb-doping on titania-based thin fi lms for gas-sensing, Sensor. Actuat. B 108, 21-28. DOI: 10.1016/j. snb.2004.10.041.[Crossref]
  • 5. Ruiz, A.M., Cornet, A., Shimanoe, K., Morante, J.R. & Yamazoe, N. (2005). Effects of various metal additives on the gas sensing performances of TiO2 nanocrystals obtained from hydrothermal treatments, Sensor. Actuat. B 108, 34-40. DOI: 10.1016/j.snb.2004.09.045.[Crossref]
  • 6. Janus, M. & Morawski, A.W. (2007). New method of improving photocatalytic activity of commercial Degussa P25 for azo dyes decomposition. Appl. Catal. B Environ. 75, 118-123. DOI: 10.1016/j.apcatb.2007.04.003.[Crossref]
  • 7. Bubacz, K., Choina, J., Dolat, D., Borowiak-Palen, E., Moszynski, D. & Morawski, A.W. (2010). Studies on nitrogen modifi ed TiO2 photocatalyst prepared in different conditions, Mater. Res. Bull. 45, 1085-1091. DOI: 10.1016/j.materresbull.2010.06.024.[Crossref]
  • 8. Dolat, D., Mozia, S., Wróbel, R.J., Moszynski, D., Ohtani, B., Guskos, N. & Morawski, A.W. (2015). Nitrogen-doped, metal-modifi ed rutile titanium dioxide as photocatalysts for water remediation. Appl. Catal. B Environ. 162, 310-318. DOI: 10.1016/j.apcatb.2014.07.001.[Crossref]
  • 9. Eufi nger, K., Poelman, D., Poelman, H., Gryse, De R. & Marin, G.B. (2007). Photocatalytic activity of dc magnetron sputter deposited amorphous TiO2 thin fi lms, Appl. Surf. Sci. 254, 148-152. DOI: 10.1016/j.apsusc.2007.07.009.[Crossref]
  • 10. Verma, A., Samanta, S. B., Bakhshi, A.K., Agnihotry, S.A. (2005). Effect of stabilizer on structural, optical and electrochemical properties of sol-gel derived spin coated TiO2 fi lms, Sol. Energ. Mater. Sol. C. 88, 47-64. DOI: 10.1016/j. solmat.2004.10.006.[Crossref]
  • 11. Zhang, J.Y., Boyd, I.W., O’Sullivan, B.J., Hurley, P.K., Kelly, P.V. & Senateur, J.P. (2002). Nanocrystalline TiO2 fi lms studied by optical, XRD and FTIR spectroscopy, J. Non-Cryst. Solids 303, 134-138. DOI: 10.1016/S0022-3093(02)00973-0.[Crossref]
  • 12. Xie Y., Ma Z., Liu L., Su Y., Zhao H., Liu Y., Zhang Z., Duan H., Li J., Xiea E. (2010). Oxygen defects-modulated green photoluminescence of Tb-doped ZrO2. Appl. Phys. Lett. 97(141916), 1-3. DOI: 10.1063/1.3496471.[Crossref]
  • 13. Park, B. (2007). Current and Future Applications of Nanotechnology, Iss. Environ. Sci. Technol. 24, 1-18, The Royal Society of Chemistry.
  • 14. Chen, L., Graham, M.E., Li, G., Gray, K.A. (2006). Fabricating highly active mixed phase TiO2 photocatalysts by reactive DC magnetron sputter deposition, Thin Solid Films 515, 1176-1181. DOI: 10.1016/j.tsf.2006.07.094.[Crossref]
  • 15. Mellott, N.P., Durucan, C., Pantano, C.G., Guglielmi, M. (2006). Commercial and laboratory prepared titanium dioxide thin fi lms for self-cleaning glasses: Photocatalytic performance and chemical durability, Thin Solid Films 502, 112-120. DOI: 10.1016/j.tsf.2005.07.255.[Crossref]
  • 16. Wu, K.R., Wang, J.J., Liu, W.C., Chen, Z.S. & Wu, J.K. (2006). Deposition of graded TiO2 fi lms featured both hydrophobic and photo-induced hydrophilic properties, Appl. Surf. Sci. 252, 5829-5838. DOI: 10.1016/j.apsusc.2005.08.016.[Crossref]
  • 17. Yuan, M., Zhang, J., Yan, S., Luo, G., Xu, Q., Wang, X. & Li, C. (2011). Effect of Nd2O3 addition on the surface phase of TiO2 and photocatalytic activity studied by UV Raman spectroscopy. J. Alloy. Compd. 509, 6227-6235. DOI: 10.1016/j. jallcom.2011.03.010.[Crossref]
  • 18. Kralchevska, R., Milanova, M., Hristov, D., Pintar, A. & Todorovsky, D. (2012). Synthesis, characterization and photocatalytic activity of neodymium, nitrogen and neodymium- -nitrogen doped TiO2. Mat. Res. Bull. 47, 2165-2177. DOI: 10.1016/j.materresbull.2012.06.009.[Crossref]
  • 19. Xie, Y. & Yuan, C. (2005), Photocatalytic and photoelectrochemical performance of crystallized titanium dioxide sol with neodymium ion modifi cation. J. Chem. Technol. Biot. 90, 954-963. DOI: 10.1002/jctb.1270.[Crossref]
  • 20. Burns, A., Li, W., Baker, C. & Shah, S.I. (2002). Sol- -gel synthesis and characterization of neodymium-ion doped nanostructured titania thin fi lms. Mat. Res. Soc. Symp. Proc. 703, V5.2.1-V5.2.6. DOI: 10.1557/PROC-703-V5.2.[Crossref]
  • 21. Wojcieszak, D., Kaczmarek, D., Domaradzki, J., Mazur, M., Morawski, A., Janus, M., Prociów, E. & Gemmellaro, P. (2012). Photocatalytic properties of transparent TiO2 coatings doped with neodymium, Pol. J. Chem. Technol. 14(3), 1-7. DOI: 10.2478/v10026-012-0077-2.[Crossref]
  • 22. Wojcieszak, D., Kaczmarek, D., Domaradzki, J. & Mazur, M. (2013). Correlation of Photocatalysis and Photoluminescence Effect in Relation to the Surface Properties of TiO2:Tb Thin Films, Int. J. Photoenergy 2013, Article ID 526140. http://dx.doi.org/10.1155/2013/526140[Crossref]
  • 23. Wojcieszak, D., Mazur, M., Kurnatowska, M., Kaczmarek, D., Domaradzki, J., Kępiński, L. & Chojnacki, K. (2014). Infl uence of Nd-Doping on Photocatalytic Properties of TiO2 Nanoparticles and Thin Film Coatings, Int. J. Photoenergy 2014, Article ID 463034. http://dx.doi.org/10.1155/2014/463034[Crossref]
  • 24. Tryba, B., Morawski, A.W., Inagaki, M. & Toyoda, M. (2006). Mechanism of phenol decomposition on Fe-C-TiO2 and Fe-TiO2 photocatalysts via photo-Fenton process, J. Photoch. Photobio. A 179, 224-228. DOI: 10.1016/j.jphotochem.2005.08.019[Crossref]
  • 25. Jiang, X., Yang, L., Liu, P., Li, X. & Shen, J. (2010). The photocatalytic and antibacterial activities of neodymium and iodine doped TiO2 nanoparticles, Colloid. Surface B 79, 69-74. DOI:10.1016/j.colsurfb.2010.03.031[Crossref]
  • 26. Khalid, N.R., Ahmed, E., Hong, Z., Zhang, Y., Ullah, M., Ahmed, M. (2013). Graphene modifi ed Nd/TiO2 photocatalyst for methyl orange degradation under visible light irradiation, Ceram. Int. 39, 3569-3575. DOI: 10.1016/j.ceramint.2012.10.183.[Crossref]
  • 27. Bokare, A., Sanap, A., Pai, M, Sabharwal, S., Athawale, A.A. (2013). Antibacterial activities of Nd doped and Ag coated TiO2 nanoparticles under solar light irradiation, Colloid. Surface. B 102, 273- 280. DOI: 10.1016/j.colsurfb.2012.08.030.[Crossref]
  • 28. Rengaraj, S., Venkataraj, S., Yeon, J.W., Kim, Y., Li, X.Z., Pang, G.K.H. (2007). Preparation, characterization and application of Nd-TiO2 photocatalyst for the reduction of Cr(VI) under UV light illumination. Appl. Catal. B. Environ. 77, 157-165. DOI: 10.1016/j.apcatb.2007.07.016.[Crossref]
  • 29. Kim, W.S., Ha, S.M., Yun, S. & Park, H.H. (2002). Microstructure and electrical properties of Ln2Ti2O7 (Ln=La, Nd), Thin Solid Films 420, 575-578. DOI: 10.1016/S0040-6090(02)00837-4.[Crossref]
  • 30. Eufi nger, K., Tomaszewski, H., Depla, D., Poelman, H., Poelman, D., De Gryse, R. (2006). The d.c. magnetron sputtering behavior of TiO2-x targets with added Fe2O3 or Nd2O3, Thin Solid Films 515, 683-686. DOI: 10.1016/j.tsf.2005.12.241.[Crossref]
  • 31. Pandiyan, R., Bartali, R., Micheli, V., Gottardi, G., Luciu, I., Ristic, D., Goget, G.A., Ferrari, M. & Laidani, N. (2011). Infl uence of Nd3+ doping on the structural and near-IR photoluminescence properties of nanostructured TiO2 fi lms, Energy Procedia 10, 167-171. DOI: 10.1016/j.egypro.2011.10.171.[Crossref]
  • 32. Shao, Z., Saitzek, S., Roussel, P., Huvé, M., Desfeux, R., Mentré, O. & Abraham, F. (2009). An easy sol-gel route for deposition of oriented Ln2Ti2O7 (Ln=La, Nd) fi lms on SrTiO3 substrates, J. Cryst. Growth 311, 4134-4141. DOI: 10.1016/j.jcrysgro.2009.06.051.[Crossref]
  • 33. Song, Y.J., Ferroelectric Thin Films for High Density Non-volatile Memories, Virgina Polytechnic Institute and State University, Blacksburg, 1998 (Ph. D. Thesis).
  • 34. Havelia, S., Balasubramaniam, K.R., Spurgeon, S., Cormack, F. & Salvador, P.A. (2008). Growth of La2Ti2O7 and LaTiO3 thin fi lms using pulsed laser deposition, J. Cryst. Growth 310, 1985-1990. DOI: 10.1016/j.jcrysgro.2007.12.006.[Crossref]
  • 35. Kannan, P.K., Saraswathi, R. & Rayappan, J.B.B. (2010). A highly sensitive humidity sensor based on DC reactive magnetron sputtered zinc oxide thin fi lm, Sens. Actuat. A Phys. 164, 8-14. DOI: 10.1016/j.sna.2010.09.006.[Crossref]
  • 36. Kleinhempel, R., Wahl, A. & Thielsch, R. (2011). Large area AR coating on plastic substrate using roll to roll methods, Surf. Coat. Technol. 205, S502-S505. DOI: 10.1016/j. surfcoat.2010.10.064.[Crossref]
  • 37. Szczyrbowski, J., Dietrich, A. & Hartig, K. (1989). Bendable silver-based low emissivity coating on glass, Sol. Energ. Mater. 19, 43-53. DOI: 10.1016/0165-1633(89)90022-1.[Crossref]
  • 38. Domaradzki, J., Kaczmarek, D. & Prociow, E.L. Patent PL 210206, 2011.
  • 39. Prociów, E., Domaradzki, J., Kaczmarek, D. & Berlicki, T. Patent PL 211827, 2012.
  • 40. Prociów, E., Domaradzki, J., Kaczmarek, D. & Berlicki, T. Patent PL 212461, 2012.
  • 41. Billard, A., Mercs, D., Perry, F. & Frantz, C. (1999). Infl uence of the target temperature on a reactive sputtering process, Surf. Coat. Technol. 116-119, 721-726. DOI:10.1016/ S0257-8972(99)00261-3.[Crossref]
  • 42. Wasielewski, R., Domaradzki, J., Wojcieszak, D., Kaczmarek, D., Borkowska, A., Prociow, E. & Ciszewski, A. (2008). Surface characterization of TiO2 thin fi lms obtained by high- -energy reactive magnetron sputtering, Appl. Surf. Sci. 254, 4396-4400. DOI: 10.1016/j.apsusc.2008.01.017.[Crossref]
  • 43. Domaradzki, J., Kaczmarek, D., Prociow, E., Borkowska, A., Schmeisser, D. & Beuckert, G. (2006). Mircrostructure and optical properties of TiO2 thin fi lms prepared by low pressure hot target reactive magnetron sputtering, Thin Solid Films 513, 269-274. DOI: 10.1016/j.apsusc.2008.01.017.[Crossref]
  • 44. Posadowski, W.M., Wiatrowski, A., Dora, J. & Radzimski, Z.J. (2008). Magnetron sputtering process control by medium- -frequency power supply parameter, Thin Solid Films 516, 4478-4482. DOI: 10.1016/j.tsf.2007.05.077.[Crossref]
  • 45. Kaczmarek, D., Domaradzki, J., Wojcieszak, D., Prociów, E., Mazur, M. & Placido, F. Lapp S. (2012). Hardness of nanocrystalline TiO2 thin fi lms, J. Nano Res. 18/19, 195-200. DOI: 10.4028/www.scientifi c.net/JNanoR.18-19.195.[Crossref]
  • 46. Kwok, D.Y., Neumann, A.W. (1999). Contact angle measurement and contact angle interpretation. Adv. Coll. Interfac. 81, 167-249. DOI: 10.1016/S0001-8686(98)00087-6.[Crossref]
  • 47. Liqiang, J., Yichun, Q., Baiqi, W., Shudan, L., Baojiang, J., Libin, Y., Wei, F., Honggang, F. & Jiazhong, S. (2006), Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity, Sol. Energ. Mater. Sol. C 90, 1773-1787. DOI: 10.1016/j. solmat.2005.11.007.[Crossref]
  • 48. Choi, W. (2006), Pure and modifi ed TiO2 photocatalysts and their environmental applications, Catal. Surv. Asia 10, 16-28. DOI: 10.1007/s10563-006-9000-2.[Crossref]
  • 49. Fujishima, A., Rao, T.N., Tryk, D.A. (2000). Titanium dioxide photocatalysis, J. Photoch. Photobio. C 1, 1-21. DOI: 10.1016/S1389-5567(00)00002-2.[Crossref]
  • 50. Zhao, L., Han, M. & Lian, J. (2008). Photocatalytic activity of TiO2 fi lms with mixed anatase and rutile structures prepared by pulsed laser deposition, Thin Solid Films 516, 3394-3398. DOI: 10.1016/j.tsf.2007.10.102.[Crossref]
  • 51. Sharfrin, E. & Zisman, W.A. (1960). Constitutive relations in the wetting of low energy surfaces and the theory of the retraction method of preparing monolayers. J. Phys. Chem. 64, 519-524. DOI: 10.1021/j100834a002.[Crossref]
  • 52. Moulder, J., Stickle, W., Sobol, P. & Bomben, K. (1995). Handbook of X-ray Photoelectron Spectroscopy, USA: Physical Electronics Inc., ISBN 0-9648124-1-X.
  • 53. Wang, T.M., Zheng, S.K., Hao, W.C. & Wang, C. (2002). Studies on photocatalytic activity and transmittance spectra of TiO2 thin fi lms prepared by r.f. magnetron sputtering method, Surf. Coat. Technol. 155, 141-145. DOI: 10.1016/S0257- -8972(02)00004-X.[Crossref]
  • 54. Tauc, J. (1970). Optical Properties of Solids, Amsterdam, North Holland
  • 55. Jing, L.Q., Yuan, F.L., Hou, H.G., Xin, B.F., Cai, W.M., Fu, H.G. (2005). Relationships of surface oxygen vacancies with photoluminescence and photocatalytic performance of ZnO nanoparticles. Sci. China Ser. B Chem. 48(1), 25-30. DOI: 10.1360/03yb0191.[Crossref]
  • 56. Boulbar, E., Millon, E., Ntsoenzok, E., Hakim, B., Seiler, W., Boulmer-Leborgne, C. & Perriere, J. (2012). UV to NIR photon conversion in Nd-doped rutile and anatase titanium dioxide fi lms for silicon solar cell application. Opt. Mater. 34, 1419-1425. DOI: 10.1016/j.optmat.2012.02.033. [Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.