Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 17 | 2 | 96-102

Article title

Preliminary studies of photocatalytic activity of gypsum plasters containing TiO2 co-modified with nitrogen and carbon

Content

Title variants

Languages of publication

EN

Abstracts

EN
The conducted studies were focused on the development of the gypsum material exhibiting self-cleaning properties. To this end, the raw gypsum was mixed with unique TiO2-based photocatalysts, previously modified by nitrogen and/ or carbon doping. The photocatalytic activity of the obtained gypsum plasters was evaluated trough the degradation of model organic compound (Reactive Red 198) under UV-vis irradiation. The impact of the photocatalysts presence on the physicochemical properties of the obtained gypsum plasters was evaluated. Furthermore, the role of non-metals presence on the photocatalytic properties of the TiO2 was determined. It was confirmed that the addition of N,C co-modified titanium dioxide into gypsum bestows this material with self-cleaning properties. The highest dye removal rate was displayed by the gypsum plaster containing optimal amount (10 wt%) of co-modified TiO2/N,C photocatalyst, after 20 hours of UV-vis irradiation.

Publisher

Year

Volume

17

Issue

2

Pages

96-102

Physical description

Dates

published
1 - 6 - 2015
online
9 - 6 - 2015

Contributors

  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environmental Engineering,ul. Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Department of Sanitary Engineering, al. Piastów 50, 70-310 Szczecin, Poland
author
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environmental Engineering,
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environmental Engineering,
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environmental Engineering,
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environmental Engineering,
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environmental Engineering,

References

  • 1. Konstantinou, I.K. & Albanis, T.A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations - a review. Appl. Catal. B-Environ. 49(1), 1-14. DOI: 10.1016/j.apcatb.2003.11.010.[Crossref]
  • 2. Karimi, L., Zohoori, S. & Yazdanshenas, M.E. (2011). Photocatalytic degradation of azo dyes in aqueous solutions under UV irradiation using nano-strontium titanate as the nanophotocatalyst. J. Saudi Chem. Soc. 18(5), 581-588. DOI: 10.1016/j.jscs.2011.11.010.[Crossref]
  • 3. Dong, W., Sun, Y., Ma, Q., Zhu, L., Hua, W., Lu, X., Zhuang, G., Zhang, S., Gou, Z. & Zhao, D. (2012). Excellent photocatalytic degradation activities of ordered mesoporous anatase TiO2-SiO2 nanocomposites to various organic contaminants. J. Hazard. Mater. 229-230, 307-320. DOI: 10.1016/j. jhazmat.2012.06.002.[Crossref]
  • 4. Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, Ch. & Herrmann, J.M. (2001). Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B-Environ. 31(2), 145-157. DOI: 10.1016/S0926-3373(00)00276-9.[Crossref]
  • 5. Rauf, M.A., Meetani, M.A. & Hisaindee, S. (2011). An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 276(1-3), 13-27. DOI: 10.1016/j.desal.2011.03.071.[Crossref]
  • 6. Augugliaro, V., Bellardita, M., Loddo, V., Palmisano, G., Palmisano, L. & Yurdakal, S. (2012). Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis. J. Photoch. Photobio. C-Photochem. Rev. 13(3), 224-245. DOI: 10.1016/j.jphotochemrev.2012.04.003.[Crossref]
  • 7. Nakata, K. & Fujishima, A. (2012). TiO2 photocatalysis: Design and applications. J. Photoch. Photobio. C-Photochem. Rev. 13(3) 169-189. DOI: 10.1016/j.jphotochemrev.2012. 06.001.[Crossref]
  • 8. Grabowska, E., Reszczyńska, J. & Zaleska, A. (2012). Mechanism of phenol photodegradation in the presence of pure and modifi ed-TiO2: A review. Water. Res. 46(17), 5453-5471. DOI: 10.1016/j.watres.2012.07.048.[Crossref]
  • 9. Carp, O., Huisman, C.L. & Reller, A. (2004). Photoinduced reactivity of titanium oxide photoinduced reactivity of titanium oxide. Solid. State Chem. 32(1-2), 33-177. DOI: 0.1016/j.progsolidstchem.2004.08.001.
  • 10. Pinho, L. & Mosquera, M.J. (2013). Photocatalytic activity of TiO2-SiO2 nanocomposites applied to buildings: Infl uence of particle size and loading. Appl. Catal. B-Environ. 134, 205-221. DOI: 10.1016/j.apcatb.2013.01.021.[Crossref]
  • 11. Fujishima, A., Rao, T. & Tryk, D. (2000). Titanium dioxide photocatalysis. J. Photoch. Photobio. C 1(1), 1-21. DOI: 10.1016/S1389-5567(00)00002-2.[Crossref]
  • 12. Auvinen, J. & Wirtanen, L. (2008). The infl uence of photocatalytic interior paints on indoor air quality. Atmos. Environ. 42(18), 4101-4112. DOI: 10.1016/j.atmosenv.2008.01.031.[Crossref]
  • 13. Iguchi, Y., Ichiura, H., Kitaoka, T. & Tanaka, H. (2003). Preparation and characteristics of high performance paper containing titanium dioxide photocatalyst supported on inorganic fi ber matrix. Chemosphere 53(100), 1193-1199. DOI: 10.1016/ S0045-6535(03)00582-4.[Crossref]
  • 14. Wang, W., Chiang, L.W. & Ku, Y. (2003). Decomposition of benzene in air streams by UV/TiO2 process. J. Hazard. Mater. 101(2), 133-146. DOI: 10.1016/S0304-3894(03)00169-9.[Crossref]
  • 15. Liuxue, Z., Xiulian, W., Peng, L. & Zhixing, S. (2007). Photocatalytic activity of anatase thin fi lms coated cotton fi bers prepared via a microwave assisted liquid phase deposition process. Surf. Coat. Tech. 201(18), 7607-7614. DOI: 10.1016/j. surfcoat.2007.02.004.[Crossref]
  • 16. Smits, M., Chan, Ch., Tytgat, T., Craeye, B., Costarramone, N., Lacombe, S. & Lenaerts, S. (2013). Photocatalytic degradation of soot deposition: Self-cleaning effect on titanium dioxide coated cementitious materials. Chem. Eng. J. 222, 411-418. DOI: 10.1016/j.cej.2013.02.089[Crossref]
  • 17. Lucas, S.S., Ferreira, V.M. & Barroso de Aguiar, J.L. (2013). Incorporation of titanium dioxide nanoparticles in mortars - Infl uence of microstructure in the hardened state properties and photocatalytic activity. Cement Concrete Res. 43, 112-120. DOI: 10.1016/j.cemconres. 2012.09.007.[Crossref]
  • 18. Yuranova, T., Sarria, V., Jardim, W., Rengifo, J., Pulgarin, C., Trabesinger, G. & Kiwi, J. (2007). Photocatalytic discoloration of organic compounds on outdoor building cement panels modifi ed by photoactive coatings. J. Photoch. Photobio. A 188 (2-3), 334-341. DOI: 10.1016/j.jphotochem.2006.12.032.[Crossref]
  • 19. Krishnan, P., Zhang, M.H., Cheng, Y., Tamliang Riang, D. & Yu, L.E. (2013). Photocatalytic degradation of SO2 using TiO2-containing silicate as a building coating material. Constr. Build. Mater. 43, 197-202. DOI: 10.1016/j.conbuildmat.2013.02.012.[Crossref]
  • 20. Yun, H., Nguyen-Phan, T.D., Hung Pham, V., Kweon, H., Chung, J.S., Lee, B. & Shin, E. W. (2012). Infl uence of TiO2 dimension and graphene oxide content on the self-cleaning activity of methylene blue-stained photocatalytic fi lms. Mater. Res. Bull. 47(10), 2988-2993. DOI: 10.1016/j.materresbull.2012.04.091.[Crossref]
  • 21. Karatasios, I., Katsiotis, M.S., Likodimos, V., Kontos, A., Papavassiliou, G., Falaras, P. & Kilikoglou, V. (2010). Photo-induced carbonation of lime-TiO2 mortars. Appl. Catal. B-Environ. 95 (1-2), 78-86. DOI: 10.1016/j.apcatb.2009.12.011.[Crossref]
  • 22. Lackhoff, M., Prieto, X., Nestle, N., Dehn, F. & Niessner, R. (2003). Photocatalytic activity of semiconductor-modified cement - influence of semiconductor type and cement ageing. Appl. Catal. B-Environ. 43(3), 205-216. DOI: 10.1016/S0926- -3373(02)00303-X.[Crossref]
  • 23. Tobaldi, D.M., Tucci, A., Camera-Roda, G., Baldi, G. & Esposito, L. (2008). Photocatalytic activity for exposed building materials. J. Eur. Ceram. Soc. 28(14), 2645-2652. DOI: 10.1016/j.jeurceramsoc.2008.03.032.[Crossref]
  • 24. Meng, T., Yu, Y., Qian, X., Zhan, S. & Qian, K. (2012). Effect of nano-TiO2 on the mechanical properties of cement mortar. Constr. Build. Mater. 29, 241-245. DOI: 10.1016/j. conbuildmat.2011.10.047.[Crossref]
  • 25. Yin, B., Wang, J.T., Xu, W., Long, D.H., Qiao, W.M. & Ling, L.Ch. (2013). Preparation of TiO2/mesoporous carbon composites and their photocatalytic performance for methyl orange degradation. New Carbon Mater. 28, 47-54. DOI: 10.1016/j.conbuildmat.2011.10.047.[Crossref]
  • 26. Yousefi , A., Allahverdi, A. & Hejazi, P. (2013). Effective dispersion of nano-TiO2 powder for enhancement of photocatalytic properties in cement mixes. Constr. Build. Mater. 41, 224-230. DOI: 10.1016/j.conbuildmat.2012.11.057.[Crossref]
  • 27. Strini, A. & Schiavi, L. (2011). Low irradiance toluene degradation activity of a cementitious photocatalytic material measured at constant pollutant concentration by a successive approximation method. Appl. Catal. B-Environ. 103(1-2), 226-231. DOI: 10.1016/j.apcatb.2011.01.031.[Crossref]
  • 28. Ruot, B., Plassais, A., Olive, F., Guillot, L. & Bonafous, L. (2009). TiO2-containing cement pastes and mortars: Measurements of the photocatalytic effi ciency using a rhodamine B-based colourimetric test. Sol. Energy. 83(10), 1794-1801. DOI: 10.1016/j.solener.2009.05.017.[Crossref]
  • 29. Hadj Aïssa, A., Puzenat, E., Plassais, A., Herrmann, J.M., Haehnel, C. & Guillard, Ch. (2011). Characterization and photocatalytic performance in air of cementitious materialscontaining TiO2. Case study of formaldehyde removal. Appl. Catal. B-Environ. 107 (1-2), 1-8. DOI: 10.1016/j.apcatb.2011.06.012.[Crossref]
  • 30. Ramirez, A.M., Demeestere, K., De Belie, N., Mäntylä, T. & Levänen, E. (2010). Titanium dioxide coated cementitious materials for air purifying purposes: Preparation, characterization and toluene removal potential. Build. Environ. 45(4), 832-838. DOI: 10.1016/j.buildenv.2009.09.003.[Crossref]
  • 31. Serna, Á., del Río, M., Palomo, J.G. & González, M. (2012). Improvement of gypsum plaster strain capacity by the addition of rubber particles from recycled tyres. Constr. Build. Mater. 35, 633-641. DOI: 10.1016/j.conbuildmat.2012.04.093.[Crossref]
  • 32. Pereira, A., Palha, F., de Brito, J. & Silvestre, J.D. (2011). Inspection and diagnosis system for gypsum plasters in partition walls and ceilings. Constr. Build. Mater. 25, 2146-2156. DOI: 10.1016/j.conbuildmat.2010.11.015.[Crossref]
  • 33. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. & Taga Y. (2001). Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269-271. DOI: 10.1126/science.1061051.[Crossref]
  • 34. Mozia, S., Bubacz, K., Janus, M. & Morawski, A.W. (2012). Decomposition of 3-chlorophenol on nitrogen modifi ed TiO2 photocatalysts. J. Hazard. Mater. 203-204, 128-136. DOI: 10.1016/j.jhazmat.2011.11.088.[Crossref]
  • 35. Bubacz, K., Choina, J., Dolat, D., Borowiak-Paleń, E., Moszyński, D. & Morawski, A.W. (2010). Studies on nitrogen modifi ed TiO2 photocatalyst prepared in different conditions. Mater. Res. Bull. 45, 1085-1091. DOI: 10.1016/j.materresbull.2010.06.024.[Crossref]
  • 36. Fu, J., Tian, Y., Chang, B., Xi, F. & Dong, X. (2013). Soft-chemical synthesis of mesoporous nitrogen-modifi ed titania with superior photocatalytic performance under visible light irradiation. Chem. Eng. J. 219, 155-161. DOI: 10.1016/j. cej.2013.01.032.[Crossref]
  • 37. Kusiak-Nejman, E., Janus, M., Grzmil, B. & Morawski, A.W. (2011). Methylene Blue decomposition under visible light irradiation in the presence of carbon-modified TiO2 photocatalysts. J. Photoch. Photob. A 226(1), 68-72. DOI: 10.1016/j. jphotochem.2011.10.018.[Crossref]
  • 38. Magallanes-Rivera, R.X., Juarez-Alvarado, C.A., Valdez, P. & Mendoza-Rangel, J.M. (2012). Modifi ed gypsum compounds: An ecological-economical choice to improve traditional plaster. Constr. Build. Mater. 37, 591-596. DOI: 10.1016/j.conbuildmat.2012.07.054.[Crossref]
  • 39. Wang, B., Li, Q., Wang, W., Li, Y. & Zhai, J. (2011). Preparation and characterization of Fe3+-doped TiO2 on fl y ash cenospheres for photocatalytic application. Appl. Surf. Sci. 257(8), 3473-3479. DOI: 10.1016/j.apsusc.2010.11.050.[Crossref]
  • 40. Zhou, P., Yu, J. & Wang, Y. (2013). The new understanding on photocatalytic mechanism of visible-light response N-S co-doped anatase TiO2 by first-principles. Appl. Catal. B-Environ. 142-143, 45-53. DOI: 10.1016/j.apcatb.2013.04.063.[Crossref]
  • 41. Winter, M., Hamal, D., Yang, X., Kwen, H., Jones, D., Rajagopalan, S., Klabunde, K.J. (2009). Defi ning reactivity of solid sorbents: what is the most appropriate metric? Chem. Mater. 21(12), 2367-2374. DOI: 10.1021/cm8032884.[Crossref]
  • 42. Janus, M., Tryba, B., Inagaki, M. & Morawski A.W. (2004). New preparation of carbon-TiO2 photocatalysts by carbonization of n-hexane deposited on TiO2. Appl. Catal. B-Environ. 52(1), 61-67. DOI: 10.1016/j.apcatb.2004.03.011.[Crossref]
  • 43. Kaneko, M. & Okura, I. (2002). Photocatalysis: Science and Technology (1st ed.). Kodansha-Springer, Tokyo.
  • 44. Maira, A.J., Coronado, J.M., Augugliaro, V., Yeung, K.L., Conesa, J.C. & Soria, J. (2001) Fourier transform infrared study of the performance of nanostructured TiO2 particles for the photocatalytic oxidation of gaseous toluene. J. Catal. 202(2), 413-420. DOI: 10.1006/jcat.2001.3301.[Crossref]
  • 45. Guskos, N., Guscos, A., Żołnierkiewicz, G., Typek, J., Berczyński, P., Dolat, D., Grzmil, B., Othani, B. & Morawski, A.W. (2012). EPR, spectroscopic and photocatalytic properties of N-modifi ed TiO2 prepared by different annealing and water-rinsing processes. Mater. Chem. Phys. 136(2-3), 889-896. DOI: 10.1016/j.matchemphys.2012.07.062.[Crossref]
  • 46. Janus, M., Inagaki, M., Tryba, B., Toyoda, M. & Morawski, A.W. (2006). Carbon- modifi ed TiO2 photocatalysts by ethanol carbonization. Appl. Catal. B-Environ. 63(3-4), 272-276. DOI: 10.1016/j.apcatb.2005.10.005.[Crossref]
  • 47. Randorn, Ch., Wongnawa, S. & Boonsin, P. (2004). Bleaching of Methylene Blue by Hydrated Titanium Dioxide. Sci. Asia 30, 149-156. DOI: 10.2306/scienceasia1513-1874.2004.30.149.[Crossref]
  • 48. Guskos, N., Typek, T., Berczyński, P., Dolat, D., Grzmil, B. & Morawski, A.W. (2012). Infl uence of annealing and rinsing on magnetic and photocatalytic properties of TiO2. Mater. Sci. Eng. B 177(2), 223-227. DOI: 10.1016/j.mseb.2011.10.017.[Crossref]
  • 49. Fox, M.A. & Dulay, M.T. (1993). Heterogeneous Photocatalysis. Chem. Rev. 93, 341-357. DOI: 10.1021/cr00017a016.[Crossref]
  • 50. Janus, M., Bubacz, K., Zatorska. J., Kusiak-Nejman, E., Czyżewski, A., Przepiórski, J. & Morawski, A.W. (2014). Induced self-cleaning properties towards Reactive Red 198 of the cement materials loaded with co-modified TiO2/N,C photocatalysts. Reac. Kinet. Mech. Cat. DOI: 10.1007/s11144-014-0749-4.[Crossref]
  • 51. Liu, Y., Liu, C.Y., Wei, J.H., Xiong, R., Pan, C.X. & Shi, J. (2010). Enhanced adsorption and visible-light-induced photocatalytic activity of hydroxyapatite modified Ag-TiO2 powders. Appl. Surf. Sci. 256(21), 6390-6394. DOI: 10.1016/j. apsusc.2010.04.022.[Crossref]
  • 52. Cong-Ju, L. & Guo-Rong, X. (2011). Infl uence of ammonia on the morphologies and enhanced photocatalytic activity of TiO2 micro/nanospheres. Appl. Surf. Sci. 257(11), 4951-4955. DOI: 10.1016/j.apsusc.2011.01.002.[Crossref]
  • 53. Wang, X. & Lim, T.T. (2010). Solvothermal synthesis of C-N codoped TiO2 and photocatalytic evaluation for bisphenol A degradation using a visible-light irradiated LED photoreactor. Appl. Catal. B-Environ. 100(1-2), 355-364. DOI: 10.1016/j. apcatb.2010.08.012.[Crossref]
  • 54. Linsebigler, A.L., Lu, G. & Yates J.T. (1995). Photocatalysis on TiO2 Surfaces: Principles, Mechanisms and Selected Results. Chem. Rev. 95(3), 735-758. DOI: 10.1021/cr00035a013.[Crossref]
  • 55. Zhang, S. & Song, L. (2009). Preparation of visiblelight- active carbon and nitrogen comodifi ed titanium dioxide photocatalysts with the assistance of aniline. Catal. Commun. 10(13), 1725-1729. DOI: 10.1016/j.catcom.2009.05.017.[Crossref]
  • 56. Kuo, Y.L., Su, T.L., Kung, F.C. & Wu, T.J. (2011). A study of parameter setting and characterization of visible-light driven nitrogen-modifi ed commercial TiO2 photocatalysts. J. Hazard. Mater. 190(1-3), 938-944. DOI: 10.1016/j.jhazmat.2011.04.031.[Crossref]
  • 57. Giannakas, A.E., Seristatidou, E., Deligiannakis, Y., Konstantinou, I. (2013). Photocatalytic activity of N-doped and N-F co-doped TiO2 and reduction of chromium(VI) in aqueous solution: an EPR study. Appl. Catal. B-Environ. 132-133, 460-468. DOI: 10.1016/j.apcatb.2012.12.017. [Crossref]
  • 58. Kowalska, E., Mahaney, O.O.P., Abe, R. & Ohtani, B. (2010). Visible-light- induced photocatalysis through surface plasma excitation of gold on titania surfaces. Phys. Chem. Chem. Phys. 12, 2344-2355. DOI: 10.1039/B917399D.[Crossref]
  • 59. Dozzi, M.V., Ohtani, B. & Selli, E. (2011). Absorption and action spectra analysis of ammonium fl uoride- doped titania photocatalysts. Phys. Chem. Chem. Phys. 13, 18217-18227. DOI: 10.1039/c1cp21558b.[Crossref]
  • 60. Dolat, D., Mozia. S., Ohtani, B. & Morawski, A.W. (2013). Nitrogen, iron- single modifi ed (N-TiO2, Fe-TiO2) and co-modifi ed (Fe, N-TiO2) rutile titanium dioxide as visiblelight active photocatalysts. Chem. Eng. J. 225, 358-364. DOI: 10.1016/j.cej.2013.03.047. [Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_pjct-2015-0036
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.