Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2015 | 17 | 2 | 47-50

Article title

Ethanol oxidation reaction at Pd-modified nickel foam obtained by PVD method


Title variants

Languages of publication



In this study, palladium-modified nickel foam substrate was applied to examine ethanol oxidation reaction (EOR) in 0.1 M NaOH supporting solution. An EOR catalyst was prepared by physical vapour deposition (PVD) of palladium onto Ni foam material. Temperature-dependent kinetics of the EOR were studied over the temperature range: 20-60°C by means of a.c. impedance spectroscopy and cyclic voltammetry techniques. Deposition of a noble metal additive was clearly exposed through scanning electron microscopy: SEM/EDX-supported analysis. Most importantly, this work investigated the effect of pre-deposited fullerene on nickel foam, on the catalytic (EOR) properties of such-produced Ni foam/Pd composite material.









Physical description


1 - 6 - 2015
9 - 6 - 2015


  • University of Warmia and Mazury in Olsztyn, Department of Chemistry, Faculty of Environmental Management and Agriculture, Plac Lodzki 4, 10-957 Olsztyn, Poland
  • University of Warmia and Mazury in Olsztyn, Department of Chemistry, Faculty of Environmental Management and Agriculture, Plac Lodzki 4, 10-957 Olsztyn, Poland
  • University of Warmia and Mazury in Olsztyn, Department of Chemistry, Faculty of Environmental Management and Agriculture, Plac Lodzki 4, 10-957 Olsztyn, Poland


  • 1. Suo, Y. & Hsing, I.M. (2011). Highly active rhodium/carbon nanocatalysts for ethanol oxidation in alkaline medium. J. Power Sources 196, 7945-7950. DOI: 10.1016/j.jpowsour.2011.05.048.[Crossref]
  • 2. Song, S.Q., Zhou, W.J., Zhou, Z.H., Jiang, L.H., Sun, G.Q., Xin, Q., Leontidis, V., Kontou, S. & Tsiakaras, P. (2005). Direct ethanol PEM fuel cells: The case of platinum based anodes. Int. J. Hydrogen Energy 30, 995-1001. DOI: 10.1016/j. ijhydene.2004.11.006.[Crossref]
  • 3. Spinace, E.V., Linardi, M. & Neto, A.O. (2005). Co-catalytic effect of nickel in the electro-oxidation of ethanol on binary Pt-Sn electrocatalysts. Electrochem. Commun. 7, 365-369. DOI: 10.1016/j.elecom.2005.02.006.[Crossref]
  • 4. Dutta, A., Mahapatra, S.S. & Datta, J. (2011). High performance PtPdAu nano-catalyst for ethanol oxidation in alkaline media for fuel cell applications. Int. J. Hydrogen Energy 36, 14898-14906. DOI: 10.1016/j.ijhydene.2011.02.101.[Crossref]
  • 5. Sheikh, A.M., Correa, P.S., da Silva, E.L., Savaris, I.D., Amico, S.C. & Malfatti, C.F. (2013). Energy conversion using Pd-based catalysts in direct ethanol fuel cell. RE&PQJ 11. 300.
  • 6. Modibedi, R.M., Masombuka, T. & Mathe, M.K. (2011). Carbon supported Pd-Sn and Pd-Ru-Sn nanocatalysts for ethanol electro-oxidation in alkaline medium. Int. J. Hydrogen Energy 36, 4664-4672. DOI: 10.1016/j.ijhydene.2011.01.028.[Crossref]
  • 7. Pierozynski, B. (2012). On the Ethanol Electrooxidation Reaction on Catalytic Surfaces of Pt in 0.1 M NaOH. Int. J. Electrochem. Sci. 7, 4261-4271.
  • 8. Pierozynski, B. (2012). Ethanol Electrooxidation on PtRh and PtRu Catalytic Surfaces in 0.1 M NaOH. Int. J. Electrochem. Sci. 7, 6406-6416.
  • 9. Mitov, M., Chorbadzhiyska, E., Rashkov, R. & Hubenova, Y. (2012). Novel nanostructured electrocatalysts for hydrogen evolution reaction in neutral and weak acidic solutions. Int. J. Hydrogen Energy 37, 16522-16526. DOI: 10.1016/j.ijhydene.2012.02.102.[Crossref][WoS]
  • 10. Dominguez-Crespo, M.A., Torres-Huerta, A.M., Brachetti- Sibaja, B. & Flores-Vela, A. (2011). Electrochemical performance of Ni-RE (RE = rare earth) as electrode material for hydrogen evolution reaction in alkaline medium. Int. J. Hydrogen Energy 36, 135-151. DOI: 10.1016/j.ijhydene.2010.09.064.[Crossref]
  • 11. Solmaz, R., Gundogdu, A., Doner, A. & Kardas, G. (2012). The Ni-deposited carbon felt as substrate for preparation of Pt-modifi ed electrocatalysts: Application for alkaline water electrolysis. Int. J. Hydrogen Energy 37, 8917-8922. DOI: 10.1016/j.ijhydene.2012.03.008.[Crossref][WoS]
  • 12. Bidault, F., Brett, D.J.L., Middleton, P.H., Abson, N. & Brandon, N.P. (2009). A new application for nickel foam in alkaline fuel cells. Int. J. Hydrogen Energy 34, 6799-6808. DOI: 10.1016/j.ijhydene.2009.06.035.[Crossref]
  • 13. Verlato, E., Cattarin, S., Comisso, N., Gambirasi, A., Musiani, M. & Vazquez-Gomez, L. (2012). Preparation of Pd- -Modifi ed Ni Foam Electrodes and Their Use as Anodes for the Oxidation of Alcohols in Basic Media. Electrocatal 3, 48-58.[Crossref]
  • 14. Grum, J. & Sturm, R. (1998). Infl uence of laser surface melt-hardening conditions on residual stresses in thin plates. Surf. Coat. Technol. 100-101, 455-458. DOI: 10.1016/S0257-8972(97)00670-1.[Crossref]
  • 15. Navinsek, B., Panjan, P. & Krusic, J. (1998). Hard coatings on soft metallic substrates. Surf. Coat. Technol. 98, 809-815. DOI: 10.1016/S0257-8972(97)00316-2.[Crossref]
  • 16. Ringleb, F., Sterrer, M. & Freund, H.J. (2014). Preparation of Pd-MgO model catalysts by deposition of Pd from aqueous precursor solutions onto Ag(0 0 1)-supported MgO(0 0 1) thin fi lms. Applied Catal. A 474, 186-193. DOI: 10.1016/j. apcata.2013.05.031.
  • 17. Czerwosz, E., Diduszko, R., Dluzewski, P., Keczkowska, J., Kozlowski, M., Rymarczyk, J. & Suchanska, M. (2007). Properties of Pd nanocrystals prepared by PVD method. Vacuum 82(4), 372-376. DOI: 10.1016/j.vacuum.2007.08.003.[Crossref]
  • 18. Diduszko, R., Kowalska, E., Kozlowski, M., Czerwosz, E. & Kaminska, A. (2013). Temperature-induced changes in the topography and morphology of C-nPd fi lms deposited on fused silica. Optica Applicata XLIII(1), 133-141. DOI: 10.5277/ oa130117.[Crossref][WoS]
  • 19. Macdonald, J.R. (1987). Impedance spectroscopy, emphasizing solid materials and systems. New York: John Wiley & Sons.
  • 20. Smoczyński, L., Ratnaweera, H., Kosobucka, M. & Smoczyński, M. (2014). Image analysis of sludge aggregates. Sep. Purif. Technol. 122, 412-420. DOI: 10.1016/j.seppur.2013.09.030.[Crossref]
  • 21. Xia, X.H., Liess, H.D. & Iwasita, T. (1997). Early stages in the oxidation of ethanol at low index single crystal platinum electrodes. J. Electroanal. Chem. 437, 233-240. DOI: 10.1016/ S0022-0728(97)00404-X.[Crossref]
  • 22. Abd-El-Latif, A.A., Mostafa, E., Huxter, S., Attard, G. & Baltruschat, H. Electrooxidation of ethanol at polycrystalline and platinum stepped single crystals: A study by differential electrochemical mass spectrometry. (2010). Electrochim. Acta 55, 7951. DOI: 10.1016/j.electacta.2010.04.008.[Crossref][WoS]
  • 23. Gomes, J.F., Busson, B., Tadjeddine, A. & Tremiliosi- Filho, G. (2008). Ethanol electro-oxidation over Pt(hkl): Comparative study on the reaction intermediates probed by FTIR and SFG spectroscopies. Electrochim. Acta 53, 6899-6905. DOI: 10.1016/j.electacta.2008.01.054.[WoS][Crossref]
  • 24. Sun, S., Jusys, Z. & Behm, R.J. (2013). Electrooxidation of ethanol on Pt-based and Pd-based catalysts in alkaline electrolyte under fuel cell relevant reaction and transport conditions. J. Power Sources 231, 122-133. DOI: 10.1016/j. jpowsour.2012.12.091.[WoS][Crossref]
  • 25. Pierozynski, B. (2011). On the Hydrogen Evolution Reaction at Nickel-Coated Carbon Fibre in 30 wt.% KOH Solution. Int. J. Electrochem. Sci. 6, 63-77.
  • 26. Camara, G.A. & Iwasita, T. (2005). Parallel pathway of ethanol oxidation: The effect of ethanol concentration. J. Electroanal. Chem. 578, 315-321. DOI: 10.1016/j.jelechem.2005.01.013.[Crossref]
  • 27. Lasia, A. & Rami, A. (1992). Kinetics of hydrogen evolution on Ni-AI alloy electrodes. J. Applied Electrochem. 22, 376-382.
  • 28. Chen, L. & Lasia, A. (1991). Study of the Kinetics of Hydrogen Evolution Reaction on Nickel-Zinc Alloy Electrodes. J. Electrochem. Soc. 138. 3321-3328. DOI: 10.1149/1.2085409.[Crossref]
  • 29. Pajkossy, T. (1994). Impedance of rough capacitive electrodes. J. Electroanal. Chem. 364, 111-125. DOI: 10.1016/0022-0728(93)02949-I.[Crossref]
  • 30. Conway, B.E. & Pierozynski, B. (2008) A.c. impedance behaviour of processes involving adsorption and reactivity of guanidonium-type cations at Pt(100) surface. J. Electroanal. Chem. 622, 10-14. DOI: 10.1016/j.jelechem.2008.04.025.[WoS][Crossref]
  • 31. Wang, D., Liu J., Wu, Z., Zhang, J., Su, Y., Liu, Z. & Xu C. (2009). Electrooxidation of Methanol, Ethanol and 1-Propanol on Pd Electrode in Alkaline Medium. Int. J. Electrochem. Sci. 4, 1672-1678.
  • 32. Xie, S.W., Chen S., Liu Z.Q. & Xu C.W. (2011). Comparison of Alcohol Electrooxidation on Pt and Pd Electrodes in Alkaline Medium. Int. J. Electrochem. Sci. 6, 882-888.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.