Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 17 | 2 | 1-10

Article title

Lagrangian simulation and analysis of the power-law fluid mixing in the two-blade circular mixers using a modified WCSPH method

Content

Title variants

Languages of publication

EN

Abstracts

EN
In the present study, we introduce a robust modified Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) method in order to examine miscible mixing within a two-blade paddle mixer. Since it has a Lagrangian nature and it is based on particles, Smoothed Particle Hydrodynamics (SPH) is an appropriate and convenient method for simulating the moving boundary problems and tracking the particles in the mixing process. The present study thus introduces a convenient SPH method for modelling the mixing process for the power-law fluids. Two geometries for the mixer are examined and the effects of the power-law index on the fluid mixing are investigated. The results show that the geometric change from circular chamber to twin chamber considerably increases the mixing rate (by at least 49%). The results also indicate that the twin chamber mixer is more efficient for the fluids with higher power-law index.

Publisher

Year

Volume

17

Issue

2

Pages

1-10

Physical description

Dates

published
1 - 6 - 2015
online
9 - 6 - 2015

Contributors

  • Sirjan University of Technology, Department of mechanical engineering, Sirjan, Iran, Postal code: 7813733385
  • Yazd University, School of Mechanical Engineering, Yazd, Postal Code: 89195-741

References

  • 1. Peryt-Stawiarska, S. & Jaworski, Z. (2008). Fluctuations of the non-Newtonian fl uid fl ow in a Kenics static mixer:An experimental study. Pol. J. Chem. Tech. 10(3), 35-37. DOI: 10.2478/v10026-008-0033-3.[Crossref]
  • 2. Lai, A.C.K. & Chen, F.Z. (2007). Comparison of a new Eulerian model with a modifi ed Lagrangian approach for particle distribution and deposition indoors. Atmos. Environ. 41(25), 5249-5256. DOI: 10.1016/j.atmosenv.2006.05.088.[WoS][Crossref]
  • 3. Zhang, X. & Ahmadi, G. (2005). Eulerian-Lagrangian simulations of liquid-gas-solid fl ows in three-phase slurry reactors. Chem. Eng. Sci. 60(18), 5089-5104. DOI: 10.1016/j. ces.2005.04.033.[Crossref]
  • 4. Lenaerts, T. & Dutré, P. (2009). Mixing fl uids and granular materials. Comput. Graph. Forum 28(2), 213-218. DOI: 10.1111/j.1467-8659.2009.01360.x.[Crossref][WoS]
  • 5. Robinson, M., Cleary, P. & Monaghan, J.J. (2008). Analysis of mixing in a twin cam mixer using Smoothed Particle Hydrodynamics. AIChE 54(8), 1987-1998. DOI: 10.1002/aic.11530.[Crossref][WoS]
  • 6. Orthmann, J. & Kolb, A. (2012). Temporal blending for adaptive SPH. Comput. Graph. Forum 31(8), 1-12. DOI: 10.1111/j.1467-8659.2012.03186.x.[Crossref]
  • 7. Gingold, R.A. & Monaghan, J.J. (1977). Smoothed Particle Hydrodynamics: theory and application to non-spherical stars. Mon. Not. Roy. Astron. Soc. 181, 375-389.
  • 8. Lucy, L.B. (1997). A numerical approach to the testing of the fi ssion hypothesis. Astron. J. 82, 1013-1024. DOI: 10.1086/112164.[Crossref]
  • 9. Antoci, C., Gallati, M. & Sibilla, S. (2007). Numerical simulation of fl uid-structure interaction by SPH. Comput. Struct. 85(11-14), 879-890. DOI: 10.1016/j.compstruc.2007.01.002.[Crossref]
  • 10. Potapov, S., Maurel, B., Combescure, A. & Fabis, J. (2009). Modeling accidental-type fl uid-structure interaction problems with the SPH method. Comput. Struct. 87(11-12), 721-734. DOI: 10.1016/j.compstruc.2008.09.009.[Crossref][WoS]
  • 11. Eghtesad, A., Shafi ei, A.R. & Mahzoon, M. (2011). A new fl uid-solid interface algorithm for simulating fl uid structure problems in FGM plates. J. Fluid Struct. 30, 141-158. DOI: 10.1016/j.jfl uidstructs.2012.02.005.[WoS][Crossref]
  • 12. Hosseini, S.M. & Amanifard, N. (2007). Presenting a modifi ed SPH algorithm for numerical studies of fl uid-structure interaction problems. IJE Transactions B: Applications 20(2), 167-178.
  • 13. Shamsoddini, R., Sefi d., M. & Fatehi, R. (2014). ISPH modelling and analysis of fl uid mixing in a microchannel with an oscillating or a rotating stirrer. Eng. Appl. Comp. Fluid. 8(2), 289-298.[WoS]
  • 14. Cheremisinoff, N.P. (2002). Handbook of water and wastewater treatment technology. UK: Butterworth Heinemann.
  • 15. Youcefi , A., Anne-Archard, D., Boisson, H.C. & Sengelin, M. (1997). On the infl uence of liquid elasticity on mixing in a vessel agitated by a two-bladed impeller. J. Fluid Eng-T. ASME, 119(3), 616-622. DOI: 10.1115/1.2819289.[Crossref]
  • 16. Han, Y., Wang, J.J., Gu, X.P. & Feng, L.F. (2012). Numerical simulation on micromixing of viscous fl uids in a stirred-tank reactor. Chem. Eng. Sci. 74, 9-17. DOI: 10.1016/j. ces.2012.02.018.[Crossref]
  • 17. Bohl, D. (2007). Experimental investigation of the fl uid motion in a cylinder driven by a fl at plate impeller. J. Fluid Eng-T. ASME 129(1), 737-746. DOI: 10.1115/1.2734186.[Crossref]
  • 18. Bohl, D., Mehta, A., Santitissadeekorn, N. & Bollt, E. (2011). Characterization of mixing in a simple paddle mixer using experimentally derived velocity fi elds. J. Fluid Eng-T. ASME 133(6), 061202-061210. DOI: 10.1115/1.4004086.[Crossref][WoS]
  • 19. Kor, Y.K., Prince, R.G.H. & Fletcher, D.F. (2008). Using CFD to identify means of reducing power consumption for mixing and suspension in paper pulp stock chests. Asia-Pac. J. Chem. Eng. 3(2), 144-150. DOI: 10.1002/apj.126.[Crossref][WoS]
  • 20. Paul, E.L., Atiemo-Obeng, V. & Kresta, S.M. (2004). Handbook of industrial mixing: science and practice. USA: Wiley-Interscience.
  • 21. Wendland, H. (1995). Piecewise polynomial, positive defi nite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4(1), 389-396. DOI: 10.1007/ BF02123482.[Crossref]
  • 22. Dehnen, W. & Aly, H. (2012). Improving convergence in smoothed particle hydrodynamics simulations without pairing instability. Mon. Not. Roy. Astron. Soc. 425(2), 1068-1082. DOI: 10.1111/j.1365-2966.2012.21439.x.[WoS][Crossref]
  • 23. Bonet, J. & Lok, T.S. (1999). Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulation. Comput. Meth. Appl. Mech. Eng. 180(1-2), 97-115. DOI: 10.1016/S0045-7825(99)00051-1.[Crossref]
  • 24. Fatehi, R. & Manzari, M.T. (2011). Error estimation in Smoothed Particle Hydrodynamics and a new scheme for second derivatives. Comput. Math. Appl. 61(2), 482-498. DOI: 10.1016/j.camwa.2010.11.028.[Crossref][WoS]
  • 25. Lee, E.S., Moulinec, C., Xu, R., Laurence, D. & Stansby, P. (2008). Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method. J. Comput. Phys. 227(18), 8417-8436. DOI: 10.1016/j. jcp.2008.06.005.[WoS][Crossref]
  • 26. Fatehi, R. & Manzari, M.T. (2011). A remedy for numerical oscillations in weakly compressible Smoothed Particle Hydrodynamics. Int. J. Numer. Meth. Fl. 67(9), 1100-1114. DOI: 10.1002/fl d.2406.[Crossref][WoS]
  • 27. Xu, R., Stansby, P. & Laurence, D. (2009). Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach. J. Comput. Phys. 228(18), 6703-6725. DOI: 10.1016/j.jcp.2009.05.032.[Crossref][WoS]
  • 28. Celik, B. & Beskok, A. (2009). Mixing induced by a transversely oscillating circular cylinder in a straight channel. Phys. Fluids 21, 0736011-0736019.
  • 29. Bell, B. & Surana, K. (1994). P-version least squares fi nite element formulation for two-dimensional, incompressible, non-Newtonian isothermal and non- isothermal fl uid fl ow. Int. J. Numer. Meth. Fl. 18, 127-162. DOI: 10.1002/fl d.1650180202.[Crossref]
  • 30. Pianko-Oprych, P. & Jaworski, Z. (2009). CFD modelling of two-phase liquid-liquid fl ow in a SMX static mixer. Pol. J. Chem. Tech. 11( 3), 41-49. DOI: 10.2478/v10026-009-0034-x.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_pjct-2015-0021
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.