Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 17 | 1 | 103-109

Article title

One-dimensional isothermal multicomponent diffusion-reaction model and its application to methanol synthesis over commercial Cu-based catalyst

Content

Title variants

Languages of publication

EN

Abstracts

EN
The present work was a study on global reaction rate of methanol synthesis. We measured experimentally the global reaction rate in the internal recycle gradientless reactor over catalyst SC309. The diffusion-reaction model of methanol synthesis was suggested. For model we chose the hydrogenation of CO and CO2 as key reaction. CO and CO2 were key components in our model. The internal diffusion effectiveness factors of CO and CO2 in the catalyst were calculated by the numerical integration. A comparison with the experiment showed that all the absolute values of the relative error were less than 10%. The simulation results showed that decreasing reaction temperature and catalyst diameter were conducive to reduce the influence of the internal diffusion on the methanol synthesis.

Publisher

Year

Volume

17

Issue

1

Pages

103-109

Physical description

Dates

published
1 - 3 - 2015
online
25 - 3 - 2015

Contributors

author
  • East China University of Science and Technology, Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, Po Box 374, NO.130 Meilong Road, Shanghai 200237, China
author
  • East China University of Science and Technology, Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, Po Box 374, NO.130 Meilong Road, Shanghai 200237, China
author
  • East China University of Science and Technology, Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, Po Box 374, NO.130 Meilong Road, Shanghai 200237, China
author
  • East China University of Science and Technology, Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, Po Box 374, NO.130 Meilong Road, Shanghai 200237, China
author
  • East China University of Science and Technology, Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, Po Box 374, NO.130 Meilong Road, Shanghai 200237, China

References

  • 1. Xie, K.C. & Fang, D.Y. (2010). Methanol technology. Beijing, China: Chemical Industry Press. (Chinese reference)
  • 2. Caulkin, R., Ahmad, A., Fairweather, M., Jia, X. & Williams, R.A. (2007). An investigation of sphere packed shell-side columns using a digital packing algorithm. Comput. Chem. Eng. 31(12), 1715-1724. DOI: 10.1016/j.compchemeng.2007.03.014.[Crossref][WoS]
  • 3. Ma, H.F., Ying, W.Y. & Fang, D.Y. (2008). Simulation of a combined converter for methanol synthesis. J. East. China. U. Sci. Technol. 34, 149-153. from http://www.cnki.com.cn/Article/CJFDTotal-HLDX200802000.htm (Chinese reference).
  • 4. Aris, R. (1975). The mathematical theory of diffusion and reaction in permeable catalysts. London, UK: Clarendon Press.
  • 5. Wood, J. & Gladden, L.F. (2002). Modelling diffusion and reaction accompanied by capillary condensation using three-dimensional pore networks. Part 1. Fickian diffusion and pseudo-first-order reaction kinetics. Chem. Eng. Sci. 57(15), 3033-3045. DOI: 10.1016/S0009-2509(02)00183-5.[Crossref]
  • 6. Wood, J., Gladden, L.F. & Keil, F.J. (2002). Modelling diffusion and reaction accompanied by capillary condensation using three-dimensional pore networks. Part 2. Dusty gas model and general reaction kinetics. Chem. Eng. Sci. 57(15), 3047-3059. DOI: 10.1016/S0009-2509(02)00184-7.[Crossref]
  • 7. Mariani, N.J., Mocciaro, C., Keegan, S.D., Martínez, O.M. & Guillermo, F.B. (2009). E valuating the effectiveness factor from a 1D approximation fitted at high Thiele modulus: Spanning commercial pellet shapes with linear kinetics. Chem. Eng. Sci. 64(11), 2762-2766. DOI: 10.1016/j.ces.2009.02.044.[Crossref][WoS]
  • 8. Aumo, J., Wärnå, J., Salmi, T. & Murzin, D.Y. (2006). Interaction of kinetics and internal diffusion in complex catalytic three-phase reactions: Activity and selectivity in citral hydrogenation. Chem. Eng. Sci. 61(2), 814-822. DOI: 10.1016/j. ces.2005.07.036.[Crossref]
  • 9. Lee, J.K., Ko, J.B. & Kim, D.H. (2004). Methanol steam reforming over Cu/ZnO/Al2O3 catalyst: kinetics and effectiveness factor. Appl. Catal., A. 278(1), 25-35. DOI: 10.1016/j. apcata.2004.09.022.[Crossref]
  • 10. Guo, W.Y., Wu, W.Z., Luo, M. & Xiao, W.D. (2013). Modeling of diffusion and reaction in monolithic catalysts for the methanol-to-propylene process. Fuel Process. Technol. 108, 133-138. DOI: 10.1016/j.fuproc.2012.06.005.[WoS][Crossref]
  • 11. Pan, T.S. & Zhu, B.C. (1998). Study on diffusion-reaction process inside a cylindrical catalyst pellet. Chem. Eng. Sci. 53(5), 933-946. DOI: 10.1016/S0009-2509(97)00385-0.[Crossref]
  • 12. Zhang, L. Zhang, H.T., Ying, W.Y. & Fang, D.Y. (2013). Dehydration of methanol to dimethyl ether over γ-Al2O3 catalyst: Intrinsic kinetics and effectiveness factor. Can. J. Chem. Eng. 91(9), 1538-1546. DOI: 10.1002/cjce.21760.[WoS][Crossref]
  • 13. Zhu, B.C., Song, W.D., Fang, D.Y. & Lu, D.Q. (1984). Multi-component diffusion model for effectiveness factor of porous catalyst (I) Multicomponent diffusion model and numerical computing method. J. Chem. Ind. Eng. 44, 33-40. from http://www.cnki.com.cn/Article/CJFDTotal-HGSZ198401003.htm (Chinese reference).
  • 14. Zhu, B.C., Song, W.D., Fang, D.Y. & Lu, D.Q. (1984). Multi-component diffusion model for effectiveness factor of porous catalyst (II) Effe ctiveness factor of high temperature slight reaction. J. Chem. Ind. Eng, 44, 41-50. form http://www.cnki.com.cn/Article/CJFDTotal-HGSZ198401004.htm (Chinese reference).
  • 15. Li, T., Xu, M.S., Zhu, B.C., Fang, D.Y. & Ying, W.Y. (2009). Reaction-diffusion model for irregularly shaped ammonia synthesis catalyst and its verification under high pressure. Ind. Eng. Chem. Res. 48(19), 8926-8933. DOI: 10.1021/ ie9001266.[WoS][Crossref]
  • 16. Permikin, D.V. & Zverev, V.S. (2013). Mathematical model on surface reaction diffusion in the presence of front chemical reaction. Int. J. Heat Mass Transfer. 57(1), 215-221. DOI: 10.1016/j.ijheatmasstransfer.2012.10.024.[Crossref]
  • 17. Lommerts, B.J., Graaf, G.H. & Beenackers, A.A.C.M. (2000). Mathe matical modeling of internal mass transport limitations in methanol synthesis. Chem. Eng. Sci. 55(23), 5589-5598. DOI: 10.1016/S0009-2509(00)00194-9.[Crossref]
  • 18. Lei, K., Ma, H.F., Zhang, H.T., Ying, W.Y. & Fang, D.Y. (2013). Intrinsic kinetics of methanol synthesis over catalyst SC309. Nat. Gas. Chem. Ind. 3, 1-5. from http://www.cnki.com.cn/Article/CJFDTotal-TRQH201303000.htm (Chinese reference).
  • 19. Graaf, G.H., Scholtens, H., Stamhuis, E.J. & Beenackers A.A.C.M. (1990). Intr a-particle diffusion limitations in low- -pressure methanol synthesis. Chem. Eng. Sci. 45(4), 773-783. DOI: 10.1016/0009-2509(90)85001-T.[Crossref]
  • 20. Graaf, G.H., Stamhuis, E.J. & Beenackers, A.A.C.M. (1988). Kinetics of the low-pressure methanol synthesis. Chem. Eng. Sci. 43(12), 3185-3195. DOI: 10.1016/0009-2509(88)85127-3.[Crossref]
  • 21. Patterson, A.L. (1939). The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 56(10), 978-982. DOI: 10.1103/PhysRev.56.978.[Crossref]
  • 22. Aris, R. (1995). On shape factors for irregular particles-I: The steady state problem. Diffusion and reaction. Chem. Eng. Sci. 50(24), 3899-3903. DOI: 10.1016/0009-2509(96)81819-7.[Crossref]
  • 23. Luss, D. & Amundson, N.R. (1967). On a conjecture of Aris: proof and remarks. AlChE J. 13(4), 759-763. DOI: 10.1002/aic.690130431.[Crossref]
  • 24. Fogler, H.S. (2005). Elements of Chemical Reaction Engineering. New Jersey, USA: Prentice-Hall International Inc.
  • 25. Wheeler, A. (1950). Reac tion rate and selectivity in catalyst pores (pp. 249-327). Adv. Catal.. Vol. New York, USA: Academic Press Inc.
  • 26. Mason, E.A., Malinauskas, A.P. & Evans, R.B. (1967). Flow and diffusion of gases in porous media. J. Chem. Phys. 46, 3199-3216. DOI: 10.1063/1.1841191.[Crossref]
  • 27. Zhu, B.C. (2001). Chemical Reaction Engineering. Beijing, China: Chemical Industry Publishing Company. (Chinese reference)
  • 28. Reid, R.C., Prausnitz, J.M. & Poling, B.E. (1987). The p roperties of gases and liquids. New York, USA: McGraw Hill Book Co.
  • 29. Curtiss, C.F. & Hirschfelder, J.O. (1949). Transport properties of multicomponent gas mixture. J. Chem. Phys. 17, 553-555. DOI: 10.1063/1.1747319.[Crossref]
  • 30. Fuller, E.N., Schettler, P.D. & Giddings, J.C. (1966). A new method for prediction of binary gas-phase diffusion coeffi- cients. Ind. Eng. Chem. 58(5), 18-27. DOI: 10.1021/ie50677a007.[Crossref]
  • 31. Shah, R.K. & London, A.L. (1978). Laminar Flow Forced Convection in Ducts. New York, USA: Academic Press.
  • 32. Chen, J., Yang, H., Wang, N., Ring, Z. & Dabros, T. (2008). Mathematical modeling of monolith catalysts and reactors for gas phase reactions. Appl. Catal. A. 345(1), 1-11. DOI: 10.1016/j.apcata.2008.04.010.[Crossref]
  • 33. Kim, D.H. & Lee, J. (2004). A robust iterative method of computing effectiveness factors in porous catalysts. Chem. Eng. Sci. 59(11), 2253-2263. DOI: 10.1016/j.ces.2004.01.056.[Crossref]
  • 34. Lee, J. & Kim, D.H. (2005). An im proved shooting method for computation of effectiveness factors in porous catalysts. Chem. Eng. Sci. 60(20), 5569-5573. DOI: 10.1016/j. ces.2005.05.027. [Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_pjct-2015-0015
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.