PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 17 | 1 | 88-96
Article title

Super phosphoric acid catalyzed esterification of Palm Fatty Acid Distillate for biodiesel production: physicochemical parameters and kinetics

Content
Title variants
Languages of publication
EN
Abstracts
EN
In the present study the esterification of palm fatty acid distillate (PFAD), a by-product from palm oil industry, in the presence of super phosphoric acid (SPA) catalyst was studied. The effects of various physico-chemical parameters such as temperature, PFAD to methanol molar ratio and amount of catalyst on the conversion of biodiesel were investigated. The percent conversion of FFA and properties of the biodiesel were determined following standard methodologies. Percent conversion of biodiesel was found to increase with the increase in PFAD to methanol molar ratio and at 1:12 molar ratio and 70°C temperature 95% conversion was achieved. Thermodynamic parameters were also evaluated in terms of Gibbs free energy, enthalpy and entropy at different molar ratio and temperatures. Both pseudo first and second order irreversible kinetics were applied to a wide range of experimental data. However, according to regression coefficient (R2) the second order described better experimental behavior of kinetic data.
Publisher

Year
Volume
17
Issue
1
Pages
88-96
Physical description
Dates
published
1 - 3 - 2015
online
25 - 3 - 2015
Contributors
  • G H Patel College of Engineering & Technology, Department of Chemical Engineering, VallabhVidyanagar-388120, anandmetre@gcet.ac.in
author
  • G H Patel College of Engineering & Technology, Department of Chemical Engineering, VallabhVidyanagar-388120
References
  • 1. Van, Gerpen, J., Shanks, B., Pruszko, R., Clements, D. & Knothe, G. (2004). Biodiesel production technology NREL/ SR-510-36244. Springfield VA: Iowa State University and Renewable Products Laboratory USDA/NCAUR.
  • 2. Kiss, A.A., Dimian, A.C. & Rothenberg, G. (2006). Solid Acid Catalysts for Biodiesel Production Towards Sustainable Energy. Adv. Synth. Ccatal. 348 (1-2), 75-81. DOI: 10.1002/ adsc.200505160.[Crossref]
  • 3. Canakci, M. & Van, Gerpen, J. (1999). Biodiesel production via acid catalysis. Transactions of ASAE 42(5), 1203-1210. DOI: 0001-2351/99/4205-1203.
  • 4. Chongkhong, S., Tongurai, C., Chetpattananondh, P. & Bunyakan, C. (2007). Biodiesel production by esterification of palm fatty acid distillate. Biomass and Bioenergy 31(8), 563-568. DOI: 10.1016/j.biombioe.2007.03.001.[Crossref]
  • 5. Mongkolbovornkij, P., Champreda, V., Sutthisripok, W. & Laosiripojana, N. (2010). Esterification of industrial-grade palm fatty acid distillate over modified ZrO2 (with WO3-, SO4 -and TiO2-): Effects of co-solvent adding and water removal. Fuel Processing Technology 91(11). 1510-1516. DOI: 10.1016/j.fuproc.2010.05.030.[WoS]
  • 6. Cho, H.J., Kim, S.H., Hong, S.W. & Yeo, Y.K. (2012). A single step non-catalytic esterification of palm fatty acid distillate (PFAD) for biodiesel production. Fuel 93(1), 373-380. DOI: org/10.1016/j.fuel.2011.08.063.
  • 7. Yujaroen, D., Goto, M., Sasaki, M. & Shotipruk, A. (2009). Esterification of palm fatty acid distillate (PFAD) in supercritical methanol: effect of hydrolysis on reaction activity. Fuel 88(10), 2011-2016. DOI: 10.1016/j.fuel.2009.02.040.[Crossref][WoS]
  • 8. Demirbas, A. (2009). Progress and recent trends in biodiesel fuels. Energy Conversion and Management 50(1), 14-34. DOI: 10.1016/j.enconman.2008.09.001.[WoS][Crossref]
  • 9. Noureddini, H. & Zhu, D. (1997). Kinetics of transesterification of soybean oil. J. Ame. Oil Chem. Soc., 74(11), 1457-1463. DOI: 10.1007/s11746-997-0254-2.[Crossref]
  • 10. Vicente, G., Martinez, M., Aracil, J. & Esteban, A. (2005). Kinetics of sunflower oil methanolysis. Industrial & Engineering Chemistry Research 44(15), 5447-5454. DOI: 10.1021/ie040208j.[Crossref]
  • 11. Darnoko, D. & Cheryan, M. (2000). Kinetics of palm oil transesterification in a batch reactor. J. Ame. Oil Chem. Soc. 77(12), 1263-1267. DOI: 10.1007/s11746-000-0198-y.[Crossref]
  • 12. Stamenkovic, O.S., Todorovic, Z.B., Lazic, M.L., Veljkovic, V.B. & Skala, D.U. (2008). Kinetics of sunflower oil methanolysis at low temperatures. Biores. Technol. 99(5), 1131-1140. DOI: 10.1016/j.biortech.2007.02.028.[Crossref]
  • 13. Deshmane, V.G., Gogate, P.R., & Pandit, A.B. (2009). Ultrasound assisted synthesis of isopropyl esters from palm fatty acid distillate. Ultrasonics Sonochemistry 16(3), 345-350. DOI: 10.1016/j.ultsonch.2008.09.004.[Crossref][WoS]
  • 14. Chin, L.H., Abdullah, A.Z. & Hameed, B.H. (2012). Sugar cane bagasse as solid catalyst for synthesis of methyl esters from palm fatty acid distillate. Chem. Engine. J. 183(1), 104-107. DOI: 10.1016/j.cej.2011.12.028.[Crossref]
  • 15. Kelkar, M.A., Gogate, P.R. & Pandit, A.B. (2008). Intensification of esterification of acids for synthesis of biodiesel using acoustic and hydrodynamic cavitation. Ultrasonics Sonochemistry 15(3), 188-194. DOI: 10.1016/j.ultsonch.2007.04.003.[Crossref][WoS][PubMed]
  • 16. Wen, B., Eli, W., Xue, Q., Dong, X. & Liu, W. (2007). Ultrasound accelerated esterification of palmitic acid with vitamin C. Ultrasonic Sonochemistry 14(2), 213-218. DOI: 10.1016/j.ultsonch.2006.02.003.[WoS][Crossref]
  • 17. Freedman, B., Pryde, E.H. & Mounts, T.L. (1984). Variables affecting the yields of fatty esters from transesterified vegetable oils. J. Ame. Oil Chem. Soci. 61(10), 1638-1643. DOI: 10.1007/BF02541649.[Crossref]
  • 18. Crabbe, E., Nolasco-Hipolito, C., Kobayashi, G., Sonomoto, K. & Ishizaki, A. (2001). Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties. Process Biochem. 37(1), 65-71. DOI:10.1016/S0032-9592(01)00178-9.[Crossref]
  • 19. Keyes, D.B. (1932). Esterification processes and equipment. Ind. Engine. Chem. Res. 24(10), 1096-1103. DOI: 10.1021/ie50274a003.[Crossref]
  • 20. Sridharan, R. & Mathai, I.M. (1974). Transesterification reactions. J. Sci. Ind. Res. 33, 178-187.
  • 21. Caetano, C.S., Fonseca, I.M., Ramos, A.M., Vital, J. & Castanheiro, J.E. (2008). Esterification of free fatty acids with methanol using heteropolyacids immobilized on silica. Catalysis Communications 9(10), 1996-1999. DOI: 10.1016/j. catcom.2008.03.036[Crossref][WoS]
  • 22. Berrios, M., Siles, J., Martın, M.A. & Martın, A. (2007). A kinetic study of the esterification of free fatty acids (FFA) in sunflower oil. Fuel 86(15), 2383-2388. DOI: 10.1016/j. fuel.2007.02.002.[Crossref]
  • 23. Kusdiana, D. & Saka, S. (2004). Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresource Technology 91(3), 289-295. DOI: 10.1016/S0960-8524(03)00201-3.[Crossref]
  • 24. Freedman, B., Butterfield, R.O. & Pryde, E.H. (1986). Transesterification kinetics of soybean oil. J. Ame. Oil Chem. Soc. 63(10), 1375-1380. DOI: 10.1007/BF02679606.[Crossref]
  • 25. Khan, A.K. (2002). Research into biodiesel kinetics & catalyst development. Uni of Queensland Brisbane Queensland.
  • 26. Hodl, P. & Schindlbauer, H. (1994). Gas chromatographic determination of free glycerol involving extraction. In Handbook of Analytical Methods for Fatty Acid Methyl Esters used as Diesel Fuel. FICHTE Institute, Vienna.
  • 27. Mittelbach, M., Pokits, B. & Silberholz, A. (1992). Diesel fuel derived from vegetable oils, IV: production and fuel properties of fatty acid methyl esters from used frying oil. In Liquid Fuels from Renewable Resources, Proc. Alternative Energy Conj, (14-15 December 1992) Ame. Soc. Agric. Eng. Michigan, USA, p. 74.
  • 28. Boros, L., Batista, M.L.S., Vaz, R.V., Figueiredo, B.R., Fernandes, V.F.S., Costa, M.C., Krhenbuhl, M.A., Meirelles, A.J.A. & Coutinho, J.A.P. (2009). Crystallization behavior of mixtures of fatty acid ethyl esters with ethyl stearate. Energy Fuels 23(9), 4625-4629. DOI: 10.1021/ef900366z.[Crossref][WoS]
  • 29. Sheehan, J., Camobreco, V., Duffield, J., Graboski, M. & Shapouri, H. (1998). National Renewable Energy Laboratory. Golden, Colorado, 314.
  • 30. Malvade, A.V. & Satpute, S.T. (2013). Production of Palm fatty acid distillate biodiesel and effects of its blends on performance of single cylinder diesel engine. Procedia Engineering 64(1), 1485-1494. DOI: 10.1016/j.proeng.2013.09.230. [Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_pjct-2015-0013
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.