Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 17 | 1 | 62-65

Article title

Direct synthesis of dimethyl carbonate and propylene glycol using potassium bicarbonate as catalyst in supercritical CO2

Content

Title variants

Languages of publication

EN

Abstracts

EN
The improved one-pot synthesis of dimethyl carbonate and propylene glycol from propylene oxide, supercritical carbon dioxide, and methanol with potassium bicarbonate as the catalyst has been reported in this paper. As far as we know, it is the first time to use potassium bicarbonate only as the catalyst in the production process which is simple and cheap. Satisfactory conversion rate of propylene oxide and yield of the products could be achieved at the optimized conditions with quite a small amount of by-products. Our new method offers an attractive choice for the production of dimethyl carbonate in large-scale industry efficiently and environmental friendly.

Publisher

Year

Volume

17

Issue

1

Pages

62-65

Physical description

Dates

published
1 - 3 - 2015
online
25 - 3 - 2015

Contributors

author
  • East China University of Science and Technology, State Key Laboratory of Chemical Engineering, Shanghai, 200237, P. R. China
author
  • East China University of Science and Technology, State Key Laboratory of Chemical Engineering, Shanghai, 200237, P. R. China
author
  • East China University of Science and Technology, State Key Laboratory of Chemical Engineering, Shanghai, 200237, P. R. China
  • East China University of Science and Technology, State Key Laboratory of Chemical Engineering, Shanghai, 200237, P. R. China
author
  • East China University of Science and Technology, State Key Laboratory of Chemical Engineering, Shanghai, 200237, P. R. China
author
  • East China University of Science and Technology, State Key Laboratory of Chemical Engineering, Shanghai, 200237, P. R. China
author
  • Chinese Academy of Sciences, State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco--Environmental Sciences, Beijing 100085, China

References

  • 1. Darensbourg, D.J. (2007). Making Plastics from Carbon Dioxide: Salen Metal Complexes as Catalysts for the Production of Polycarbonates from Epoxides and CO2. Chem. Rev. 107 (6), 2388-2410. DOI:10.1021/cr068363q.[WoS]
  • 2. Jessop, P.G., Ikariya, T. & Noyori, R. (1999). Homogeneous Catalysis in Supercritical Fluids. Chem. Rev. 99 (2), 475-493. DOI: 10.1021/cr970037a.[Crossref]
  • 3. Baiker, A. (1999). Supercritical fluids in heterogeneous catalysis. Chem. Rev. 99 (2), 453-474. DOI: 10.1021/cr970090z.[Crossref]
  • 4. Darr, J.A. & Poliakoff, M. (1999). New directions in inorganic and metal-organic coordination chemistry in supercritical fluids. Chem. Rev. 99 (2), 495-541. DOI: 10.1021/cr970036i.[Crossref]
  • 5. Tundo, P. & Selva, M. (2002). The chemistry of dimethyl carbonate. Acc. Chem. Res. 35 (9), 706-716. DOI: 10.1021/ ar010076f.[Crossref]
  • 6. Fukuoka, S., Kawamura, M., Komiya, K., Hachiya, H., Hasegawa, K., Aminaka, M., Okamoto, H., Fukawa, I. & Konno, S. (2003). A novel non-phosgene polycarbonate production process using by-product CO2 as starting material. Green. Chem. 5, 497-507. DOI: 10.1039/B304963A.
  • 7. King, S.T. (1997). Oxidative Carbonylation of methanol to dimethyl carbonate by solid-state ion-exchanged CuY catalysts. Catal. Today 33, 173-182. DOI: 10.1016/S0920-5861(96)00118-6.[Crossref]
  • 8. Sato, Y., Yamamoto, T. & Souma, Y. (2000). Poly- (pyridine-2,5-diyl)-CuCl2 catalyst for synthesis of dimethyl carbonate by oxidative carbonylation of methanol: catalytic activity and corrosion influence. Catal. Lett. 65, 123-126. DOI: 10.1023/A:1019033725260.
  • 9. Fujita, S.I., Bhanage, B.M., Ikushima, Y. & Arai, M. (2001). Synthesis of dimethyl carbonate from carbon dioxide and methanol in the presence of methyl iodide and base catalysts under mild conditions: effect of reaction conditions and reaction mechanism. Green. Chem. 3 (2), 87-91. DOI: 10.1039/B100363L.[Crossref]
  • 10. Choi, J.C., Sakakura, T. & Sako, T. (1999). Reaction of dialkyltin methoxide with carbon dioxide relevant to the mechanism of catalytic carbonate synthesis. J. Am. Chem. Soc. 121, 3793-3794. DOI: 10.1021/ja9900499.[Crossref]
  • 11. Tomishige, K. & Kunimori, K. (2002). Catalytic and direct synthesis of dimethyl carbonate starting from carbon dioxide using CeO2-ZrO2 solid solution heterogeneous catalyst: effect of H2O removal from the reaction system. Appl. Catal. A: Gen. 237, 103-109. DOI: 10.1016/S0926-860X(02)00322-8.[Crossref]
  • 12. Isaacs, N.S., O’Sullivan, B. & Verhaelen, C. (1999) High pressure routes to dimethyl carbonate from supercritical carbon dioxide. Tetrahedron 55, 11949-11956. DOI: 10.1016/ S0040-4020(99)00693-6.[Crossref]
  • 13. Sakakura, T., Choi, J.C., Saito, Y., Masuda, T., Sako, Y., Masuda, T., Sako, T. & Oriyama, T. (1999). Metal-catalyzed dimethyl carbonate synthesis from carbon dioxide and acetals. J. Org. Chem. 64, 4506-4508. DOI: 10.1021/jo990155t.[Crossref]
  • 14. Bhanage, B.M., Fujita, S.I., Ikushima, Y., Torii, K. & Arai, M. (2003). Synthesis of dimethyl carbonate and glycols from carbon dioxide, epoxides and methanol using heterogeneous Mg containing smectite catalysts: effect of reaction variables on activity and selectivity performance. Green. Chem. 5, 71-75. DOI: 10.1039/B207750G.[Crossref]
  • 15. Bhanage, B.M., Fujita, S.I., He, Y.F., Ikushima, Y., Shirai, M., Torii, K. & Arai, M. (2002). Concurrent Synthesis of Dimethyl Carbonate and Ethylene Glycol via Transesterifi- cation of Ethylene Carbonate and Methanol Using Smectite Catalysts Containing Mg and/or Ni. Catal. Lett. 83, 137-141. DOI: 10.1023/A:1021065409888.[Crossref]
  • 16. Sakakura, T. & Kohno, K. (2009). The synthesis of organic carbonates from carbon dioxide. Chem. Comm. 11. 1312-1330. DOI: 10.1039/b819997c.[Crossref]
  • 17. Bhanage, B.M., Fujita, S.I., Ikushima, Y. & Arai, M. (2001). Synthesis of dimethyl carbonate and glycols from carbon dioxide, epoxides, and methanol using heterogeneous basic metal oxide catalysts with high activity and selectivity. Appl. Catal. A: Gen. 219 (1-2), 259-266. DOI: 10.1016/S0926-860X(01)00698-6.[Crossref]
  • 18. Chang, Y.H., Jiang, T., Han, B.X., Liu, Z.M., Wu, W.Z., Gao, L., Li, J.C., Gao, H.X., Zhao, G.Y. & Huang, J. (2004). One-pot synthesis of dimethyl carbonate and glycols from supercritical CO2, ethylene oxide or propylene oxide, and methanol. Appl. Catal. A: Gen. 263 (2), 179-186. DOI: 10.1016/j.apcata.2003.12.012.[Crossref]
  • 19. Fan, B., Qu, B., Chen, Q.C., Wen, Y.C., Cai, L. & Zhang, R. (2011). An improved one-pot synthesis of dimethyl carbonate from propylene oxide, CO2 and methanol. J. Chem. Res. 35, 654-656. DOI: 10.3184/174751911X13192908398731. [Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_pjct-2015-0010
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.