Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 17 | 1 | 18-22

Article title

Hydrogen evolution reaction at Ru-modified nickel-coated carbon fibre in 0.1 M NaOH

Content

Title variants

Languages of publication

EN

Abstracts

EN
The electrochemical activity towards hydrogen evolution reaction (HER) was studied on commercially available (Toho-Tenax) and Ru-modified nickel-coated carbon fibre (NiCCF) materials. Quality and extent of Ru electrodeposition on NiCCF tows were examined by means of scanning electron microscopy (SEM). Kinetics of the hydrogen evolution reaction were investigated at room temperature, as well as over the temperature range: 20-50°C in 0.1 M NaOH solution for the cathodic overpotential range: -100 to -300 mV vs. RHE. Corresponding values of charge-transfer resistance, exchange current-density for the HER and other electrochemical parameters for the examined fibre tow composites were recorded.

Publisher

Year

Volume

17

Issue

1

Pages

18-22

Physical description

Dates

published
1 - 3 - 2015
online
25 - 3 - 2015

Contributors

  • University of Warmia and Mazury in Olsztyn, Department of Chemistry, Faculty of Environmental Management and Agriculture, Plac Łódzki 4, 10-957 Olsztyn, Poland
  • University of Warmia and Mazury in Olsztyn, Department of Chemistry, Faculty of Environmental Management and Agriculture, Plac Łódzki 4, 10-957 Olsztyn, Poland

References

  • 1. Hijikata, T. (2002). Research and development of international clean energy network using hydrogen energy (WE-NET). Int. J. Hydro. Energ. 27, 115-129. DOI: 10.1016/ S0360-3199(01)00089-1.[Crossref]
  • 2. Momirlan, M. & Veziroglu, T.N. (2005). The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. Int. J. Hydro. Energ. 30, 795-802. DOI: 10.1016/j.ijhydene.2004.10.011.[Crossref]
  • 3. Solmaz, R. (2013). Electrochemical preparation and characterization of C/Ni-NiIr composite electrodes as novel cathode materials for alkaline water electrolysis. Int. J. Hydro. Energ. 38, 2251-2256. DOI: 10.1016/j.ijhydene.2012.11.101.[Crossref]
  • 4. Xie, Z., He, P., Du, L., Dong, F., Dai, K. & Zhang, T. (2013). Comparison of four nickel-based electrodes for hydrogen evolution reaction. Electrochim. Acta 88, 390-394. DOI: 10.1016/j.electacta.2012.10.057.[Crossref]
  • 5. Olivares-Ramirez, J.M., Campos-Cornelio, M.L., Uribe Godinez, J., Borja-Arco, E. & Castellanos, R.H. (2007). Studies on the hydrogen evolution reaction on different stainless steels. Int. J. Hydro. Energ. 32, 3170-3173. DOI: 10.1016/j. ijhydene.2006.03.017.[Crossref]
  • 6. Jafarian, M., Azizi, O., Gobal, F. & Mahjani, M.G. (2007). inetics and electrocatalytic behavior of nanocrystalline CoNiFe alloy in hydrogen evolution reaction. Int. J. Hydro. Energ. 32, 1686-1693. DOI: 10.1016/j.ijhydene.2006.09.030.[WoS][Crossref]
  • 7. Yadav, J.B., Park, J.W., Cho. Y.J. & Joo, O.S. (2010). ntermediate hydroxide enforced electrodeposited platinum film for hydrogen evolution reaction. Int. J. Hydro. Energ. 35, 10067-10072. DOI: 10.1016/j.ijhydene.2010.07.144.[WoS][Crossref]
  • 8. Conway, B.E. & Tilak, B.V. (1992). Behavior and Characterization of Kinetically Involved Chemisorbed Intermediates in Electrocatalysis of Gas Evolution Reactions. Adv. Catal. 38, 1-147. DOI: 10.1016/S0360-0564(08)60006-1.[Crossref]
  • 9. Pierozynski, B. & Smoczynski, L. (2009). Kinetics of Hydrogen Evolution Reaction at Nickel-Coated Carbon Fiber Materials in 0.5 M H2SO4 and 0.1 M NaOH Solutions. J. Electrochem. Soc. 156(9), B1045-B1050. DOI: 10.1149/1.3158518.[WoS]
  • 10. Pierozynski, B. (2011). On the Hydrogen Evolution Reaction at Nickel-Coated Carbon Fibre in 30 wt. % KOH Solution. Int. J. Electrochem. Sci. 6, 63-77.
  • 11. Pierozynski, B. & Mikolajczyk, T. (2012). Hydrogen Evolution Reaction at Ru-modified Carbon Fibre in 0.5 M H2SO4. Int. J. Electrochem. Sci. 7, 9697-9706.
  • 12. Pierozynski, B. (2013). Hydrogen evolution reaction at Pd-modified carbon fibre and nickel-coated carbon fibre materials. Int. J. Hydro. Energ. 38, 7733-7740. DOI: 10.1016/j. ijhydene.2013.04.092.[Crossref]
  • 13. McKone, J.R., Warren, E.L., Bierman, M.J., Boettcher, S.W., Brunschwig, B.S., Lewis, N.S. & Gray, H.B. (2011). Evaluation of Pt, Ni, and Ni-Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes. Energy Environ. Sci. 4, 3573-3583. DOI: 10.1039/c1ee01488a.[Crossref][WoS]
  • 14. Warren, E.L., McKone, J.R., Atwater, H.A., Gray, H.B., Lewis, N.S. (2012). Hydrogen-evolution characteristics of Ni- Mo-coated, radial junction, n+p-silicon microwire array photocathodes. Energy Environ. Sci. 5, 9653-9661. DOI: 10.1039/ c2ee23192a.[Crossref][WoS]
  • 15. Nocera, D.G., (2012). The Artificial Leaf. Acc. Chem. Res. 45, 767-776. DOI: 10.1021/ar2003013.[Crossref]
  • 16. Chen, W.F., Sasaki, K., Ma, C., Frenkel, A.I., Marinkovic, N., Muckerman, J.T., Zhu, Y., Adzic, R.R. (2012). Hydrogen- Evolution Catalysts Based on Non-Noble Metal Nickel- Molybdenum Nitride Nanosheets. Angew. Chem. Int. Ed. 51, 6131-6135. DOI: 10.1002/anie.201200699.[Crossref][WoS]
  • 17. Macdonald, J.R. (1990). Impedance Spectroscopy: Old Problems and New Developments. Electrochim. Acta 35, 1483-1492. DOI: 10.1016/0013-4686(90)80002-6.[Crossref]
  • 18. Hitz, C. & Lasia, A. (2001). Experimental study and modeling of impedance of the her on porous Ni electrodes. J. Electroanal. Chem. 500, 213-222. DOI: 10.1016/S0022-0728(00)00317-X.[Crossref]
  • 19. Dominguez-Crespo, M.A., Torres-Huerta, A.M., Brachetti- Sibaja, B. & Flores-Vela, A. (2011). Electrochemical performance of Ni-RE (RE = rare earth) as electrode material for hydrogen evolution reaction in alkaline medium. Int. J. Hydro. Energ. 36, 135-151. DOI: 10.1016/j.ijhydene.2010.09.064.[Crossref]
  • 20. Dominguez-Crespo, M.A., Ramirez-Meneses, E., Torres- Huerta, A.M., Garibay-Febles, V. & Philippot, K. (2012). Kinetics of hydrogen evolution reaction on stabilized Ni, Pt and Ni-Pt nanoparticles obtained by an organometallic approach. Int. J. Hydro. Energ. 37, 4798-4811. DOI: 10.1016/j. ijhydene.2011.12.109.[WoS][Crossref]
  • 21. Solmaz, R., Gundogdu, A., Doner, A. & Kardas, G. (2012). The Ni-deposited carbon felt as substrate for preparation of Pt-modified electrocatalysts: Application for alkaline water electrolysis. Int. J. Hydro. Energ. 37, 8917-8922. DOI: 10.1016/j. ijhydene.2012.03.008.[Crossref][WoS]
  • 22. Highfield, J.G., Claude, E. & Oguro, K. (1999). Electrocatalytic synergism in Ni/Mo cathodes for hydrogen evolution in acid medium: a new model. Electrochim. Acta 44, 2805-2814. DOI: 10.1016/S0013-4686(98)00403-4.[Crossref]
  • 23. Krstajic, N., Popovic, M., Grgur, B., Vojnovic, M. & Sepa, D. (2001). On the kinetics of the hydrogen evolution reaction on nickel in alkaline solution: Part I. The mechanism. J. Electroanal. Chem. 512, 16-26. DOI: 10.1016/S0022-0728(01)00590-3.[Crossref]
  • 24. Martinez, S., Metikos-Hukovic, M. & Valek, L. (2006). Electrocatalytic properties of electrodeposited Ni-15Mo cathodes for the HER in acid solutions: Synergistic electronic effect. J. Mol. Cat. A. Chem. 245, 114-121. DOI: 10.1016/j. molcata.2005.09.040.[Crossref]
  • 25. Shervedani, R.K. & Madram, A.R. (2007). Kinetics of hydrogen evolution reaction on nanocrystalline electrodeposited Ni62Fe35C3 cathode in alkaline solution by electrochemical impedance spectroscopy. Electrochim. Acta 53, 426-433. DOI: 10.1016/j.electacta.2007.06.006. [Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_pjct-2015-0004
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.