PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 17 | 1 | 7-10
Article title

Reactivity of nano zero-valent iron in permeable reactive barriers

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper, the ability of nZVI to remove heavy metals (Cd, Cu, Ni, Pb, Zn) from multicomponent aqueous solutions was investigated through batch experiments. The experimental data were fitted to a second-order kinetic model based on solid capacity. The data for copper and lead fitted well into the second-order kinetic model, thus suggesting that the adsorption had a physical character. The values of the removal ratio and the second-order rate constant indicated that the order of adsorption priority of nZVI was as follows: Pb>Cu>Zn>Cd>Ni. The adsorption isotherm data were described by the most conventional models (Henry, Freundlich, and Langmuir). Equilibrium tests showed that copper and zinc were removed from the solution by adsorption processes, i.e., complexation and competitive adsorption. The test results suggested that the removal processes using nZVI are more kinetic than equilibrium. The study demonstrated that nZVI is favorable reactive material; however, comprehensive investigation should be performed for further in situ applications in PRB technology.
Publisher

Year
Volume
17
Issue
1
Pages
7-10
Physical description
Dates
published
1 - 3 - 2015
online
25 - 3 - 2015
Contributors
  • Warsaw University of Life Sciences – SGGW, Faculty of Civil and Environment Engineering, Nowoursynowska 159, 02-773 Warsaw, Poland, katarzyna_pawluk@sggw.pl
  • Warsaw University of Life Sciences – SGGW, Faculty of Civil and Environment Engineering, Nowoursynowska 159, 02-773 Warsaw, Poland
  • Warsaw University of Life Sciences – SGGW, Faculty of Civil and Environment Engineering, Nowoursynowska 159, 02-773 Warsaw, Poland
References
  • 1. Gavaskar, A. (1999). Design and construction techniques for permeable reactive barriers. J. Hazard. Mater. 68, 41-71.
  • 2. Yong, R.M. & Mulligan, C.N. (2004). Natural attenuation of contaminants in soils. Boca Raton, FL, USA: Lewis Publishers.
  • 3. Nassar, N.N. (2012). Kinetics, Equilibrium and thermodynamic studies on the adsorptive removal of nickel, cadmium and cobalt from wastewater by superparamagnetic iron oxide nanoadsorbents. Can. J. Chem. Engin. 90, 1231-1238. DOI: 10.1002/cjce.20613.[WoS][Crossref]
  • 4. Ku, Y. & Jung, I.L. (2001). Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Res. 35, 135-14. DOI: 10.1016/ S0043-1354(00)00098-1.[Crossref]
  • 5. Zhu, S., He, W., Li, G., Zhou, X., Zhang, X. & Huang, J. (2012). Recovery of Co and Li from spent lithium-ion batteries by combination method of acid leaching and chemical precipitation.
  • T. Nonferr. Metal. Soc. 22, 2274−2281. DOI: 10.1016/ S1003-6326(11)61460-X.[Crossref]
  • 6. Smara, A.R., Delimi, R., Chainet, E. & Sandeaux, J. (2007). Removal of heavy metals from diluted mixtures by a hybrid ion-exchange/ electrodialysis processes. Sep. Sci. Technol. 57, 103-110. DOI: 10.1016/j.seppur.2007.03.012.[WoS][Crossref]
  • 7. Dermentzis, K.I., Davidis, A.E., Dermentzi A.S. & Chatzichristou, C.D. (2010). An electrostatic shielding-based coupled electrodialysis/electrodeionization process for removal of cobalt ions from aqueous solutions. Water Sci. Technol. 62 (8), 1947-1953. DOI: 10.2166/wst.2010.547.[WoS][Crossref]
  • 8. Hernández-Montoya, V., Pérez-Cruz, M.A., Mendoza-Castillo, D.I. & Moreno-Virgen, M.R. (2013). Competitive adsorption of dyes and heavy metals on zeolitic structures, J. Environ. Manage. 116, 213-221. DOI: 10.1016/j.jenvman.2012.12.010.[Crossref][WoS]
  • 9. Lee, T. (2011). Microwave preparation of raw vermiculite for use in removal of copper ions from aqueous solutions. Enivorn. Technol. 32, 1195-1203. DOI:10.1080/09593330.201 0.531055.[Crossref]
  • 10. Treviño-Corderoa, H., Juárez-Aguilara, L.G., Mendoza- -Castilloa, D.I., Hernández-Montoyaa, V., Bonilla-Petricioleta, A. & Montes-Moránb, M.A. (2013). Synthesis and adsorption properties of activated carbons from biomass of Prunus domestica and Jacaranda mimosifolia for the removal of heavy metals and dyes from water, Ind. Crop. Prod. 42, 315-323. DOI:10.1016/j.indcrop.2012.05.029.[Crossref][WoS]
  • 11. Landaburu-Aguirre, J., García, V., Pongrácz, E. & Keiski, R.L. (2009). The removal of zinc from synthetic wastewaters by micellar-enhanced ultrafiltration: statistical design of experiments. Desalination 240, 262-269. DOI:10.1016/j. desal.2007.11.077.[WoS][Crossref]
  • 12. Sampera, E., Rodrígueza, M., De la Rubia, M.A. & Prats, D. (2009). Removal of metal ions at low concentration by micellar-enhanced ultrafiltration (MEUF) using sodium dodecyl sulfate (SDS) and linear alkylbenzene sulfonate (LAS). Sep. Purif. Technol. 65, 337-342. DOI:10.1016/j.seppur.2008.11.013.[WoS][Crossref]
  • 13. Gavaskar, A., Gupta, N., Sass, B., Janosy, R. & Hicks, J. (2000). Design guidance for application of permeable reactive barriers for groundwater remediation. Columbus, Ohio. Retrived January 16, 2013 from CLU-IN: http://www.cluin.org/conf/itrc/ prbll_061506/prb-2.pdf
  • 14. Fu, F. & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage. 92(3), 407-418. DOI: 10.1016/j.jenvman.2010.11.011.[Crossref]
  • 15. Naftz, D.L., Morrison, S.J., Fuller, C.C. & Davis, J.A. (2002). Handbook of groundwater remediation using permeable reactive barriers: application to radionuclides, trace metal, and nutrients. Amsterdam, Denmark: Elsevier Science.
  • 16. Kenneke, J.F. & McCutcheon, S.C. (2003). Use of pretreatment zone and zero-valent iron for the remediation of chloroalkenes in an oxic aquifer. Environ. Sci. Technol. 37(12), 2829-2835. DOI:10.1021/es0207302.[Crossref]
  • 17. Wilkin, R.T., Su, C.M., Ford, R.G. & Paul, C.J. (2005). Chromium-removal processes during groundwater remediation by a zero-valent iron permeable reactive barrier. Environ. Sci.Technol. 39, 4599-4605. DOI: 10.1021/es050157x.[Crossref]
  • 18. Velazquez-Jimenez, L.H., Pavlick, A. & Rangel-Mendez, J.R. (2013). Chemical characterization of raw and treated agave bagasse and its potential as adsorbent of metal cations from water. Ind. Crop. Prod. 43, 200-206. DOI: 10.1016/j. indcrop.2012.06.049.[Crossref][WoS]
  • 19. Doskočil, L. & Pekař, M. (2012). Removal of metal ions from multi-component mixture using natural lignite. Fuel Process. Technol. 101, 29-34. DOI: 10.1016/j.fuproc.2012.02.010.[WoS][Crossref]
  • 20. Zhang, M. (2011). Adsorption study of Pb(II), Cu(II) and Zn(II) from simulated acid mine drainage using dairy manure compost. Chem. Eng. J. 172, 361-368. DOI: 10.1016/j. cej.2011.06.017.[Crossref][WoS]
  • 21. Xue, Y., Hou, H. & Zhu, S. (2009). Competitive adsorption of copper(II), cadmium(II), lead(II) and zinc(II) onto basic oxygen furnace slag. J. Hazard. Mater. 162, 391-401. DOI: 10.1016/j.jhazmat.2008.05.072.[Crossref]
  • 22. Ho, Y.S., Porter, J.F. & Mckay, G. (2002) Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems, Water Air Soil Poll. 141, 1-33.
  • 23. Esmaeili, A., Kalantari, M. & Saremnia, B. (2012). Biosorption of Pb (II) from aqueous solutions by modified of two kinds of marine algae, Sargassum glaucescens and Gracilaria Corticata. Pol. J. Chem. Tech. 14(2), 22-28. DOI: 10.2478/ v10026-012-0066-5.[Crossref]
  • 24. Wilkin, R.T. & McNeil, M.S. (2003). Laboratory evaluation of zero-valent iron to treat water impact by acid mine drainage. Chemosphere 53, 715-725. DOI:10.1016/S0045-6535(03)00512-5.[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_pjct-2015-0002
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.