PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 69 | 1 | 29-52
Article title

Carbon Isotopic Composition Of Earlydiagenetic Methane: Variations With Sediments Depth

Content
Title variants
Languages of publication
EN
Abstracts
EN
We demonstrate the annual cycle of methane in fresh sediments of two lakes - Moszne (E Poland) and Skrzynka (W Poland). The vertical gradient in δ13C(CH4) values varied widely from about -4.5‰/(-1 m) in late summer 1993 to about +2.5‰/(-1 m) in late winter, in the uppermost sediment profiles of about 3-meters in length. These vertical variations apparently are not due to oxidation or temperature changes, but rather to the higher gradient of the downward decrease of production rates via the acetic acid fermen-tation pathway rather than via the CO2-H2 pathway. The production of methane and δ13C(CH4) values are the highest during summer while the lowest during winter, reflect-ed especially during surface sampling. The downward gradient of δ13C in winter, late autumn and, at greater depths, in late summer results from isotope enrichment of the residual pool of precursors of methane, predominantly CO2.
Publisher
Year
Volume
69
Issue
1
Pages
29-52
Physical description
Dates
published
1 - 3 - 2015
online
13 - 3 - 2015
References
  • 1. Baker-Blocker A., Donohue T.M., and Mancy K.H. (1977) Methane flux from wetland areas, Tellus 29, 245-250. [Crossref]
  • 2. Barker H.A. (1936) On the Biochemistry of methane fermentation, Arch. Microbiol. 7, 420-438.
  • 3. Barker J.F. and Fritz P. (1981) Carbon isotope fractionation during microbial methane oxidation, Nature 293, 289-291.
  • 4. Bell R.G. (1969) Studies on the decomposition of organic matter in flooded soils, Soil Biol. Biochem. 1, 105-116. [Crossref]
  • 5. Benner R., Maccubin A.E., and Hodson R.E. (1984) Anaerobic biodegradation of lignin polysaccharide components of lingocellulose and synthetic lignin by sediment microflora, Appl. Environ. Microbiol. 47, 998-1004.
  • 6. Blair N.E. and Carter JR W.D. (1992) The carbon isotope biogeochemistry of acetate from a methanogenic marine sediment, Geochim. Cosmochim. Acta 56, 1247-1258. [Crossref]
  • 7. Burke R.A., Martens C.S., and Sacket W.M. (1988) Seasonal variation of D/H and 13C/12C ratios of microbial methane in surface sediments, Nature 332, 829-831.
  • 8. Chanton J.P. and Martens S. (1988) Seasonal variations in ebullitive flux and carbon isotopic composition of methane in tidal freshwater estuary, Global Biogeochem. Cycles 2, 289-298.
  • 9. Chanton J.P., Martens C.S., Kelley C.A., Crill P.M. and Showers W.J. (1992) Methane Transport Mechanisms and Isotopic Fractionation in Emerged Macrophytes of an Alaskan Tundra Lake, J. Geophys. Res. 97, 16681-16688. [Crossref]
  • 10. Christensen D. (1984) Determination of substrates oxidized by sulphate reduction in intact cores of marine sediments. Limnol. Oceanogr. 29, 198-192. [Crossref]
  • 11. Cicerone R.J., Shetter J.D., Delwiche C.C. (1983) Seasonal variation of methane flux from a California rice paddy, J. Geophys. Res. 88, 1022-11024. [Crossref]
  • 12. Coleman D.D., Risatti J.B., and Schoel M. (1981). Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria, Geochim. Cosmochim. Acta 45, 1033-1037. [Crossref]
  • 13. Conrad R., and Babbel M. (1989) Effect of dilution on methanogenesis, hydrogen turnover and interspecies hydrogen transfer in anoxic paddy soil, FEMS Microbiol. Ecol. 62, 21-27. [Crossref]
  • 14. Craig H., and Chou C.C. (1982) Methane: the record in polar ice cores, Gephys. Res. Lett. 9, 447-481. [Crossref]
  • 15. Crill P.M. and Martens C.S. (1986) Methane production from bicarbonate and acetate in an anoxic marine sediment, Geochim. Cosmochim. Acta 50, 2089-2097. [Crossref]
  • 16. Dacey J .W.H. (1981) How aquatic plants ventilate, Oceanus 24, 43-51.
  • 17. Dacey J .W.H., and lug M.J. (I979) Methane efflux from lake sediments through water lilies, Science 203, 1253-1255.
  • 18. Games L.M., Hayes J.M., and Gunsalus R.P. (1978) Methane-producing bacteria: natural fractionations of the stable carbon isotopes, Geochim. Casmochim. Acta 42, 1295-1297. [Crossref]
  • 19. Gerard G. a nd C hanton J. (1993) Quantification of methane oxidation in the rhizosphere of emergent aquatic macrophytes: defining upper limits, Biogeochemistry 23, 79-97. [Crossref]
  • 20. Hałas S. (1979) An automatic inlet system with pneumatic changeover valves for isotope ratio mass spectrometer, J. Phys. E.: Sci. Instr. 12, 418-420. [Crossref]
  • 21. Hałas S., and Skorzyński Z. (1980) An inexpensive device for digital measurements of isotopic ratios, J. Phys. E. : Sci. Instr. 13, 346-349. [Crossref]
  • 22. Harriss R.C. and Sebacher D.I. (1981) Methane flux in forested freshwater swamps of the southeastern United States, Geophys. Res. Lett. 8, 1002-1004. [Crossref]
  • 23. Harriss R.C., Sebacher D.I., and Day JR. F.P. (1982) Methane flux in the Great Dismal Swamp, Nature 297, 673-674.
  • 24. Heal O.W. and Ineson P. (1984) Carbon and energy flow in terrestrial ecosystems: relevance to microflora, in: K lug M .J., a nd R eddy C .A. ( eds.), Current Perspectives in Microbial Ecology, Amer. Soc. Microbiol., Washington DC, pp. 394-404.
  • 25. Jędrysek M.O. (1994) Carbon isotope evidence for diurnal variations in methanogenesis in freshwater lake sediments, in: M.O.Jędrysek (ed.), Extended Abstracts of Isotope Workshop II, 25-27 May 1994, Książ Castle, Poland., pp. 66- 68., International Isotope Society and University of Wrocław.
  • 26. Jędrysek M.O. (1995) Carbon isotope evidence for diurnal variations in methanogenesis in freshwater lake sediments, Geochim. Cosmochim. Acta, 59, 557-561. [Crossref]
  • 27. Jędrysek M.O. (1997) Spatial and temporal variations in carbon isotope ratio of early-diagenetic methane from freshwater sediments: methanogenic pathways, Acta Universitatis Vratislaviensis - Prace Geologiczno-Mineralogiczne, (Monograph), vol. 63, pp. 1-110.
  • 28. Jędrysek M.O. (2005a) Depth of the water column in relation to carbon isotope ratios in methane in freshwater sediments, Geological Quarterely, 49 (2), 151-164.
  • 29. Jędrysek M.O. (2005b) S-O-C isotopic picture of sulphate-methane-carbonate system in freshwater lakes. Environmental Chemistry Letters 3 (4), 100-112. [Crossref]
  • 30. Jędrysek M.O., Hałas S., Wada E., Sokołowski K., Filus M.S., Takai Y., and Radwan S. (1994) Carbon isotope evidence for seasonal and spatial variations of methanogenesis during early diagenesis in freshwater lake sediments, Poland, in: M.O.Jędrysek (Ed.) Extended Abstracts of Isotope Workshop II, 25-27 May 1994, Książ Castle, Poland., pp. 69-73., International Isotope Society and University of Wrocław.
  • 31. Jędrysek M.O., Hałas S., Wada E., Boonprakup S., Ueda S., Vijarnsorn P. and Takai Y. (1997) Early-diagenetic Methane from Various Tropical Freshwater Sediments: Molecular and Carbon Isotope Variations in One Dial Cycle, Ann. Soc. Geol. Polon. 67, 93-101.
  • 32. Khail M.A.K., and Rasmussen R. (1983) Sources, sinks and seasonal cycles of atmospheric methane, J. Geophys. Res. 88, 5131-5144. [Crossref]
  • 33. King G.M., Klug M.J., and Lovley D.R. (1983) Metabolism of acetate, methanol, and methylated amines in intertidal sediments of Lowes Cove, Maine, Appl. Environ. Microbiol. 45, 1848-1853.
  • 34. Koyama T, Nashimura M., and Matsuda 1-1. (1979) Early diagenesis of organic matter in lacustrine sediments in terms of methane fermentation, Geomicrobiol. J. 1, 31 1-327. [Crossref]
  • 35. Koyama T. (1990) Gases in lakes, their production mechanism and degassing (CH4 and 1-12) of the Earth., in: Geochemistry of gaseous elements and compounds, Thephrastus Publishing & Proprietary Co., SA. (Let.), Athens, pp. 271-335.
  • 36. Krzycki J.A., Kenealky W.R., Deniro M.J., and Zeikus J.G. (1987) Stable carbon isotope fractionation by Methanosarcina barkeri during methanogenesis from acetate, methanol and carbon dioxide-hydrogen, Appl. Environ. Microbiol. 53, 2597-2599.
  • 37. Lovley D.R. a nd K lug M.J. (1983) Methanogenesis from methanol and methylamines and acetogenesis from hydrogen and carbon dioxide in the sediments of an euthrophic 1akes, Appl. Environ. Microbiol. 45, 1310-1315.
  • 38. Martens C.S., Blair E.N., Green C.D. and des Marais D.J. (1986) Seasonal Variations in the Stable Carbon Isotopic Signature of Biogenic Methane in a Coastal Sediment, Science 223, 1300-1303.
  • 39. Matson M.D. and Likens G.E. (1990) Air pressure and methane fluxes, Nature 347, 718-719.
  • 40. Michelson A.R., Jacobson M.E., Scranton, and Mackin J.E. (1989) Modeling of distribution of acetate in anoxic estuarine sediments, Limnol. Oceanogr. 34, 747- 757. [Crossref]
  • 41. Moore L.R. (1969) Geomicrobiology and geomicrobiological attack on sediment organic matter, in: Elington G., and Murphy M.T.J. (eds.) Organic Geochemistry, Springer, New York, pp. 265-303.
  • 42. Oremland R.S., Marsi-i L.M., Polcin S. (1982) Methane production and simultaneous sulphate reduction in anoxic salt marsh sediments, Nature 296, 143- 145.
  • 43. Patterson J.A. and Hespell R.B. (1979) Trimethylamine and methylamine as growth substrates for rumen bacteria and Methanosarcina barkeri, Curr. Microbid. 3, 79-83. [Crossref]
  • 44. Sebacher D.I., Harriss R.C., and Bartlett K.B. (1983) Methane flux across the airwater interface: air velocity effects, Tellus 35B, 103-109. [Crossref]
  • 45. Sebacher D.I., Harriss R.C., and Bartlett K.B. (1985) Methane emission to the atmosphere through aquatic plants, J.Environ. Qual. 14, 40-46. [Crossref]
  • 46. Sebacher D.I., Harriss R.C., Bartlett K.B., Sebacher S.M., and Grice S.S. (1986) Atmospheric methane sources: Alaskan tundra bogs, an alpine fen, and subarctic boreal marsh, Tellus 38B, 1-10. [Crossref]
  • 47. Sorensen J., Christensen D., and Jorgensen B (1981) Volatile fatty acids and hydrogen as substrates of sulphate reducing bacteria in anaerobic marine sediments, Appl. Environ. Microbiol. 42, 5-11.
  • 48. Steele L.P., Fraser P.J., Rasmussen R.A., Khalil M.A.K., Conwat T.J., and Thoning K.W. (1987) The global distribution of methane in the troposphere, J. Atmos. Chem. 5, 125-171. [Crossref]
  • 49. Sugimoto A. a nd W ada E. (1993) Carbon isotopic composition of bacterial methane in a soil incubation experiment: Contributions of acetate and CO2/H2, Geochim. Cosmochim. Acta 57, 4015-4027. [Crossref]
  • 50. Sugimoto A. and Wada E. (1995) Hydrogen isotopic composition of bacterial methane: CO2/H2 reduction and acetate fermentation, Geochim. Cosmochim. Acta 59, 1329-1337.
  • 51. Svenson BH. and Rossewall T. (1984) In situ methane production from acid peat in plant communities with different moisture regimes in a subarctic mire, Oikos 43, 341-350. [Crossref]
  • 52. Takai Y. (1970) The mechanism of methane fermentation in flooded paddy soil, Soil Sci. Plant Nutr. 6, 238-244. [Crossref]
  • 53. Wada E. (1990) Carbon isotopic studies of global methane production with emphasis on paddy fields, in: Course-book of Isotope Geology (ed. M.O. Jędrysek), pp. 141-149, Wroclaw University and Committee on Mineral Sci.
  • 54. Weimer P.J. and Zeikus J.G. (1978) Acetate metabolism in Methanosarcina barkeri, Arch. Microbiol. 119, 175-182. [Crossref]
  • 55. Wetzel R.G. (1975) Limnology, Saunders, Philadelphia.
  • 56. Whiticar M.J., Faber E., and Schoell M. (1986) Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation: Isotope evidence, Geochim. Cosmochim. Acta 50, 693-709.
  • 57. Whiting G.J. and Chanton J.P. (1993) Primary production control of methane emission from wetlands, Nature 364, 794-795.
  • 58. Wilgat T., Michalczyk Z., Turczyński M., and Wojciechowski H.K. (1991) The Łęczna-Włodawa Lakes, Studies of Documentation Center of Physiography, vol. XIX., Zakład Narodowy im. Ossolińskich, Wrocław-Warszawa-Kraków, Polish Academy of Sciences.
  • 59. Woltemate I., Whiticar M.J., and Schoell M. (1984) Carbon and hydrogen isotope composition of bacterial methane in a shallow freshwater lake, Limnol. Oceanogr. 29, 985-992. [Crossref]
  • 60. Zindler S.H. and Brock T.D. (1978a) Production of methane and carbon dioxide from methane thiol and dimethylsulfide by anaerobic lake sediments, Nature 273, 226-228.
  • 61. Zindler S.H. and Brock T.D. (1978b) Methane, carbon dioxide and hydrogen sulfide production from the terminal methiol group of methionine by anaerobic lake sediments, Appl. Environ. Microbiol. 35, 344-352.
  • 62. Zyakun A.M., Bondar V.A., and Nasmarayev B.B. (1979) Fractionation of stable carbon isotopes of methane in process of microbiological oxidation, Geokhimiya, pp. 29l-297.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_physica-2015-0003
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.