Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 13 | 1 |

Article title

Solving nonlinear evolution equation system using two different
methods

Content

Title variants

Languages of publication

EN

Abstracts

EN
This paper deals with constructing more general
exact solutions of the coupled Higgs equation by using
the (G0/G, 1/G)-expansion and (1/G0)-expansion methods.
The obtained solutions are expressed by three types
of functions: hyperbolic, trigonometric and rational functions
with free parameters. It has been shown that the suggested
methods are productive and will be used to solve
nonlinear partial differential equations in applied mathematics
and engineering. Throughout the paper, all the calculations
are made with the aid of the Maple software.

Publisher

Journal

Year

Volume

13

Issue

1

Physical description

Dates

received
14 - 9 - 2015
accepted
30 - 9 - 2015
online
31 - 12 - 2015

Contributors

author
  • Eskisehir Osmangazi
    University, Art-Science Faculty, Department of Mathematics-
    Computer, Eskisehir-Turkey
author
  • Eskisehir Osmangazi
    University, Art-Science Faculty, Department of Mathematics-
    Computer, Eskisehir-Turkey
  • Eskisehir Osmangazi
    University, Art-Science Faculty, Department of Mathematics-
    Computer, Eskisehir-Turkey

References

  • [1] R. Hirota, Direct method of finding exact solutions of nonlinearevolution equations, In: R. Bullough, P. Caudrey (Eds.), Backlundtransformations (Springer, Berlin, 1980)
  • [2] V.B. Matveev, M.A. Salle, Darboux Transformation and Solitons(Springer, Berlin, 1991)
  • [3] Z. Yan, Chaos Soliton Fract. 21, 1013 (2004)[Crossref]
  • [4] G.W. Bluman, S. Kumei, Symmetries and differential equations(New York, Springer Verlag, 1989)
  • [5] C.M. Khalique, A. Biswas, Commun. Nonlinear Sci. Numer.Simul. 14, 4033 (2009)[Crossref]
  • [6] S. Kumar, K. Singh, R.K. Gupta, Commun. Nonlinear Sci. Numer.Simul. 17, 1529 (2012)[Crossref]
  • [7] K.W. Chow, J. Math. Phys., 36, 4125 (1995)
  • [8] N.C. Freeman, J.J.C. Nimmo, Proc. R. Soc. London, 389, 319(1983)
  • [9] M. Wang, Phys. Lett. A, 199, 169 (1995)[Crossref]
  • [10] E. Fan, H. Zhang, Phys. Lett. A, 246, 403 (1998)
  • [11] J. Liu, K. Yang, Chaos Soliton Fract. 22, 111 (2004)[Crossref]
  • [12] A. Bekir, Physica Scripta 77, 501 (2008)
  • [13] A. M. Wazwaz, Math. Comput. Model. 40, 499 (2004)[Crossref]
  • [14] A. Boz, A. Bekir, Comput. Math. Appl. 56, 1451 (2008)[Crossref]
  • [15] J.H. He, X.H. Wu, Chaos Soliton. Fract. 30, 700 (2006)[Crossref]
  • [16] M.J. Ablowitz, H. Segur, Solitons and Inverse Scattering Transform,(SIAM, Philadelphia, 1981)
  • [17] V.O. Vakhnenko, E.J. Parkes, A.J. Morrison, Chaos Soliton Fract.17, 683 (2003)[Crossref]
  • [18] A.C. Cevikel, A. Bekir, M. Akar, S. San, Pramana J. Phys., 79, 333(2012)
  • [19] A. Bekir, Commun. Nonlinear Sci. Numer. Simul. 13, 1748 (2008)[Crossref]
  • [20] A. Bekir, M. Kaplan, O. Guner, AIP Conf. Proc. 1611, 30 (2014)
  • [21] A. Bekir, A. Akbulut, M. Kaplan, IJNS 19, 159 (2015)
  • [22] Y. Gurefe, A. Sonmezoglu, E. Mısırlı, Pramana J. Phys. 77, 1023(2011)[Crossref]
  • [23] A. Bekir, Phys. Lett. A 372, 3400 (2008)
  • [24] X. Liu, L. Tian, Y. Wu, Appl. Math. Comput. 217, 1376 (2010)
  • [25] H. Zhang, Acta Appl. Math. 106, 241 (2009)[Crossref]
  • [26] M. Kaplan, A. Akbulut, A. Bekir, Z. Naturforsch. A Phys. Sci. A70, 969 (2015)
  • [27] L.X. Li, E.Q. Li, M.L. Wang, App. Math.-A J. Chin. Univ. 25, 454(2010)[Crossref]
  • [28] M. Tajiri, J. Phys. Soc. Japan 9, 2277 (1983)[Crossref]
  • [29] H. Zhao, Chaos Soliton Fract. 36, 359 (2008)[Crossref]
  • [30] A. Bekir,Commun. Nonlinear Sci. Numer. Simul. 14, 1069 (2009)[Crossref]
  • [31] A. Yokus, Solutions of some nonlinear partial differential equationsand comparison of their solutions, PhD thesis, (Fırat University,Elazig, Turkey, 2011)
  • [32] M. Kaplan,O. Unsal, A. Bekir,Math. Method. Appl. Sci. (in press)(2016)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_phys-2015-0054
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.