Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 13 | 1 |

Article title

Solving nonlinear boundary value problems by the Galerkin
method with sinc functions

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this paper, the sinc-Galerkin method is used
for numerically solving a class of nonlinear differential
equations with boundary conditions. The importance of
this study is that sinc approximation of the nonlinear term
is stated as a new theorem. The method introduced here is
tested on some nonlinear problems and is shown to be a
very efficient and powerful tool for obtaining approximate
solutions of nonlinear ordinary differential equations.

Publisher

Journal

Year

Volume

13

Issue

1

Physical description

Dates

received
14 - 11 - 2015
accepted
26 - 11 - 2015
online
31 - 12 - 2015

Contributors

author
  • Department of Mathematics,
    Mustafa Kemal University, Hatay, Turkey
author
  • Department of Mathematical Engineering, Yildiz Technical
    University, Istanbul, Turkey

References

  • [1] J. He, Commun. Nonlinear Sci. Numer. Simul. 2, 230 (1997)[Crossref]
  • [2] J.H. He, Comput. Method. Appl. M. 167, 69 (1998)
  • [3] Z.M. Odibat, O. Momani, Int. J. Nonlinear Scie. Numer. Simul. 7,27 (2006)
  • [4] S. Liao, Y. Tan, Stud. Appl. Math. 119, 297 (2007)
  • [5] S. Liao, Appl. Math. Comput. 147, 499 (2004)
  • [6] S. Abbasbandy,Phys. Lett. A, 360, 109 (2006)
  • [7] H. Jafari, S. Seifi, Commun. Nonlinear Sci. Numer. Simul. 14,2006 (2009)[Crossref]
  • [8] N.T. Shawagfeh, Appl. Math. Comput. 131, 517 (2002)
  • [9] E. Babolian, J. Biazar, Appl. Math. Comput. 132, 167 (2002)
  • [10] J.L. Li, J. Comput. Appl. Math., 228, 168 (2009)
  • [11] C. Chun, H. Jafari, Y.I. Kim, Comput. Math. Appl. 57, 1226 (2009)
  • [12] D.D. Ganji, Phys. Lett. A 355, 337 (2006)
  • [13] U. Lepik, Appl. Math. Comput. 185, 695 (2007)
  • [14] G. Hariharan, K. Kannan, K.R. Sharma, Appl.Math. Comput. 211,284 (2009)
  • [15] L. Yuanlu, Commun. Nonlinear Sci. Numer. Simul. 15, 2284(2010)[Crossref]
  • [16] S.A. Yousefi, Appl. Math. Comput. 181, 1417 (2006)
  • [17] S.G. Venkatesh, S.K. Ayyaswamy, S.R. Balachandar, Comput.Math. Appl. 63, 1287 (2012)
  • [18] F. Stenger, J. Approx. Theory 17, 222 (1976)[Crossref]
  • [19] F. Stenger, Math. Comp. 33, 85 (1979)
  • [20] J. Rashidinia, N. Nabati, Comput. Appl. Math. 32, 315 (2013)
  • [21] M. El-Gamel, A.I. Zayed, Comput. Math. Appl. 48, 1285 (2004)
  • [22] M. Zarebnia, M. Sajjadian,Math. Comput. Model. 56, 218 (2012)
  • [23] A. Secer, S. Alkan, M.A. Akinlar, M. Bayram, Bound. Value Probl.2013, 281 (2013)[Crossref]
  • [24] S. Alkan, A. Secer, Math. Probl. Eng. 2015, 217348 (2015)
  • [25] A. Secer, M. Kurulay, M. Bayram, M.A. Akinlar, Bound. ValueProbl. 2012, 1 (2012)
  • [26] S. Alkan, NTMSci 2, 01 (2014)
  • [27] J. Lund, K.L. Bowers, Sinc methods for quadrature and differentialequations, SIAM, Philadelphia (1992)
  • [28] F. Stenger, Handbook of Sinc numerical methods, CRC Press,USA (2010)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_phys-2015-0050
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.