PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2015 | 13 | 1 |
Article title

A local description of dark energy in terms of classical
two-component massive spin-one uncharged fields on
spacetimes with torsionful affinities

Content
Title variants
Languages of publication
EN
Abstracts
EN
It is assumed that the two-component spinor formalisms
for curved spacetimes that are endowed with torsionful
affine connexions can supply a local description
of dark energy in terms of classical massive spin-one uncharged
fields. The relevant wave functions are related to
torsional affine potentials which bear invariance under
the action of the generalized Weyl gauge group. Such potentials
are thus taken to carry an observable character
and emerge from contracted spin affinities whose patterns
are chosen in a suitable way. New covariant calculational
techniques are then developed towards deriving explicitly
the wave equations that supposedly control the propagation
in spacetime of the dark energy background. What immediately
comes out of this derivation is a presumably natural
display of interactions between the fields and both
spin torsion and curvatures. The physical properties that
may arise directly fromthe solutions to thewave equations
are not brought out.
Publisher

Journal
Year
Volume
13
Issue
1
Physical description
Dates
received
2 - 5 - 2015
online
27 - 11 - 2015
accepted
3 - 11 - 2015
Contributors
  • Department of Mathematics,
    Centre for Technological Sciences-UDESC, Joinville 89219-
    710 SC, Brazil
References
  • [1] A.G. Riess et al., Astro. Jour. 116, 1009 (1998)
  • [2] S. Perlmuter et al., Astro. Jour. 517, 565 (1999)
  • [3] P.J.E. Peebles, B. Ratra, Rev. Mod. Phys. 75, 559 (2003)
  • [4] E.J. Copeland et al., Int. J. Mod. Phys. D15, 1753 (2006)[Crossref]
  • [5] A.V. Minkevich, Phys. Lett. B, Vol. 678, Issue 5, 423 (2009)
  • [6] T. Buchert, Gen. Rel. Grav., 40, 467 (2008)[Crossref]
  • [7] C. Beck, M.C. Mackey, Int. J. Mod. Phys. D 17, 71 (2008)[Crossref]
  • [8] A.D. Chernin et al., Astrophys. 50, 405 (2007)
  • [9] A.R. Prasanna, S. Mohanty, Gen. Rel. Grav., 41, 1905 (2009)[Crossref]
  • [10] C.L. Bennett et al., Astrophys. J. Supp. Series 148, 1 (2003)
  • [11] D.N. Spergel et al., Astrophys. J. Supp. Series 148, 148 (2003)
  • [12] T. Padmanabhan, Phys. Rep. 380, 235 (2003)
  • [13] C.G. Böehmer, T. Harko, Eur. Phys. J. C50, 423 (2007)[Crossref]
  • [14] A. Trautman, Encyclopedia ofMathematical Physics, Vol. 2, 189,In: J.P. Françoise, G.L. Naber, S.T. Tsou (Eds.) (Elsevier, Oxford,2006)
  • [15] F.W. Hehl et al., Rev. Mod. Phys., 48, 393 (1976)[Crossref]
  • [16] R. Penrose, W. Rindler, Spinors and Space-Time Vol. 1, (CambridgeUniversity Press, Cambridge, 1984)
  • [17] T.W. Kibble, Jour. Math. Phys. 2, 212 (1961)[Crossref]
  • [18] D.W. Sciama, On the Analogy Between Charge and Spin in GeneralRelativity, In: Recent Developments in General Relativity(Pergamon and PWN, Oxford, 1962)
  • [19] N.J. Poplawski, Phys. Lett. B 694, 181 (2010)
  • [20] C.G. Böehmer, Acta Phys. Polon. B 36, 2841 (2005)
  • [21] I.L. Shapiro, Phys. Rep. 357, 113 (2002)
  • [22] V. De Sabbata, Astrophysics and Space Science Vol. 158, 347(Kluwer Academic Publishers, Belgium, 1989)
  • [23] S. Capozziello et al., Eur. Phys. Jour. C, 72, 1908 (2012)[Crossref]
  • [24] T.P. Sotiriou, S. Liberat, Ann. Phys. 322, 935 (2007)
  • [25] T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010)
  • [26] L. Infeld, B.L. Van der Waerden, Sitzber. Akad. Wiss., Physikmath.Kl. 9, 380 (1933)
  • [27] H. Weyl, Z. Physik 56, 330 (1929)
  • [28] J.G. Cardoso, Czech. J. Phys. B 4, 401 (2005)[Crossref]
  • [29] J.G. Cardoso, Adv. Appl. Clifford Algebras 22, 985 (2012)
  • [30] R. Penrose, Ann. Phys. 10, 171 (1960)[Crossref]
  • [31] L. Witten, Phys. Rev. 1, 357 (1959)
  • [32] J.G. Cardoso, Acta Phys. Polon. 38, 2525 (2007)
  • [33] J.G. Cardoso, Wave Equations for Invariant Infeld-van der WaerdenWave Functions for Photons and Their Physical Significance, In: Photonic Crystals, Optical Properties, Fabrication,W.L. Dahl (Ed.) (Nova Science Publishers Inc., New York, 2010)
  • [34] H. Jehle, Phys. Rev. 75, 1609 (1949)
  • [35] W.L. Bade, H. Jehle, Rev. Mod. Phys. 25, 714 (1953)[Crossref]
  • [36] P.G. Bergmann, Phys. Rev. 107, 624 (1957)
  • [37] E.T. Newman, R. Penrose, Jour. Math. Phys. 3, 566 (1962)[Crossref]
  • [38] R. Penrose, W. Rindler, Spinors and Space-Time Vol. 2 (CambridgeUniversity Press, Cambridge, 1986)
  • [39] J.G. Cardoso, EPJ B 130, 10 (2015)
  • [40] J. Plebanski, Acta Phys. Polon. 27, 361 (1965)
  • [41] R. Penrose, Found. Phys. 13, 325 (1983)[Crossref]
  • [42] A. Trautman, Symposia Mathematica 12, 139 (1973)
  • [43] A. Trautman, Nature (Phys. Sci.) 242, 7 (1973)
  • [44] A. Trautman, Annals N. Y. Acad. Sci. 262, 241 (1975)
  • [45] R. Geroch, Jour. Math. Phys. 9, 1739 (1968)[Crossref]
  • [46] R. Geroch, Jour. Math. Phys. 11, 343 (1970)[Crossref]
  • [47] M. Burgess, Classical Covariant Fields, Cambridge Monographson Mathematical Physics (Cambridge University Press, Cambridge,2005)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_phys-2015-0044
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.