Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 13 | 1 |

Article title

Correlation between Electron Mobility and Static
Dielectric Permittivity of n-InSb

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Direct analytical calculations of the static dielectric
permittivity-dependent electron mobility due to different
elastic scattering mechanisms for n-type InSb were
carried out. The calculated static dielectric permittivity increases
by increasing of donor concentration. The temperature
dependence of the electron mobility from 10 K up to
300 K has been demonstrated. Generally, the electron mobility
shows peak behavior in this range of temperatures.
The direct correlation between the electron mobility and
the static dielectric permittivity at 300 K was investigated.
The dependence of the electron mobility on donor concentration
was discussed both when the static dielectric permittivity
is assumed to be varying and when it is assumed
to be a constant. The difference in behavior was noticed
particularly at high donor concentrations.

Publisher

Journal

Year

Volume

13

Issue

1

Physical description

Dates

received
18 - 5 - 2015
accepted
25 - 9 - 2015
online
26 - 11 - 2015

Contributors

author
  • Deanship of Scientific
    Research, King Saud University, Riyadh 11451, Saudi Arabia
    and Physics Department, Faculty of Science, Alexandria University,
    Alexandria 21511, Egypt

References

  • [1] K. Martens, , Chi On Chui, , G. Brammertz, B. De Jaeger, D.Kuzum, M. Meuris, M. M. Heyns, T. Krishnamohan, K. Saraswat,H. E. Maes, and G. Groeseneken, IEEE Trans. Electron dev. 55(2008) 547-556.[Crossref]
  • [2] S. Balendhran, J. Deng, J. Zhen Ou, S. Walia, J. Scott, J. Tang, K.L.Wang, M. R. Field, S. Russo, S. Zhuiykov, M. S. Strano, N. Medhekar,S. Sriram, M. Bhaskaran, and K. Kalantar-zadeh, Adv.Mat. 25 (2013) 109–114.
  • [3] T. T. Mnatsakanov, M. E. Levinshtein, L. I. Pomortseva, S. N.Yurkov, G. S. Simin, M. A. Khan, Solid-State Electron. 47 (2003)111–115.[Crossref]
  • [4] S. Jin, M. V. Fischetti, and T. W. Tang, J. Appl. Phys. 102 (2007)083715.[Crossref]
  • [5] H. S. Nalwa, ed., Handbook of Low and High Dielectric ConstantMaterials and Their Applications, Academic Press (1999).
  • [6] G.W. Castellan, and F. Seitz, On the Energy States of Impuritiesin Silicon, in Semiconducting Materials. Butterworth, London(1951).
  • [7] S. Dhar, and A.H.Marshak, Solid-State Electron., 28 (1985) 763-766.[Crossref]
  • [8] K. Alfaramawi and M.A. Alzamil, Optoelectron. Adv. Mat.- RapidComm. 3 (2009) 569.
  • [9] B. K. Ridley, J. Phys. C: Solid State Phys. 10 (1977) 1589.[Crossref]
  • [10] S. M. Sze, and K. K. Ng, Physics of Semiconductor Devices, JohnWiley & Sons, New Jersy (2006).
  • [11] M. Capizzi, G. A. Thomas, F. DeRosa, R. N. Bhatt, and T. M. Rice,Phys. Rev. Lett. 44 (1980) 1019-1022.[Crossref]
  • [12] J. Serre and A. Ghazali, Phys. Rev. B 28 (1983) 4704-4715.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_phys-2015-0039
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.