PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2015 | 13 | 1 |
Article title

Unification Principle and a Geometric Field Theory

Content
Title variants
Languages of publication
EN
Abstracts
EN
In the context of the geometrization philosophy,
a covariant field theory is constructed. The theory satisfies
the unification principle. The field equations of the
theory are constructed depending on a general differential
identity in the geometry used. The Lagrangian scalar
used in the formalism is neither curvature scalar nor torsion
scalar, but an alloy made of both, the W-scalar. The
physical contents of the theory are explored depending on
different methods. The analysis shows that the theory is
capable of dealing with gravity, electromagnetism and material
distribution with possible mutual interactions. The
theory is shown to cover the domain of general relativity
under certain conditions.
Contributors
  • Department
    of Astronomy, Faculty of Science, Cairo University, Giza,
    Egypt
  • Department
    of Astronomy, Faculty of Science, Cairo University, Giza,
    Egypt
  • Department
    of Astronomy, Faculty of Science, Cairo University, Giza,
    Egypt
References
  • [1] R. Aldrovandi, J. G. Pereira, K. H. Vu, Braz. J. Phys. 34, 4A (2004)[Crossref]
  • [2] A. Ashtekar, M. Reuter, C. Rovelli, arXiv:1408.4336v1 [gr-qc][WoS]
  • [3] G. R. Bengochea, R. Ferraro, Phys. Rev. D 79, 124019 (2009)
  • [4] R. J. Blakely, Potential Theory in Gravity and Magnetic Applications(Cambridge University Press, England, 1996)
  • [5] R. Bottema, A&A 393, 453 (2002)
  • [6] S. M. Carroll, Living Rev. Relativ. 4, 1 (2001)[Crossref]
  • [7] J. Cepa, Astron. Astrophys. 422, 831 (2004)
  • [8] L. P. Chimento, A. S. Jakubi, D. Pavon, arXiv:0010079v1 [astro-ph]
  • [9] V. C. De Andrade, L. C. T. Guillen, J. G. Pereira, In: V. G. Gurzadyan,R. T. Jantzen, R. Ruflni (Ed.), the Ninth Marcel Grossmann Meeting,July 2000 (Rome, Italy) (2002) B 1022
  • [10] A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010)[Crossref]
  • [11] R. D. De Souza, R. Opher, JCAP 22, 1002 (2010)
  • [12] A. Dev, J. S. Alcaniz, D. Jain, Phys. Rev. D 67, 023515 (2003)
  • [13] P. Dolan,W. H. McCrea, Fundamental Identity in Electrodynamicsand General Relativity (Personal communication, 1963)
  • [14] A. Einstein, The Meaning of Relativity, 5th ed. (Princeton, 1955)
  • [15] R. Ferraro, F. Fiorini, Phys. Rev. D 75, 084031 (2007)
  • [16] R. Ferraro, F. Fiorini, Phys. Rev. D 78, 124019 (2008)[Crossref]
  • [17] A. H. Guth, Phys. Rev. D 23, 347 (1981)
  • [18] K. Hayashi, T. Shirafuji, Phys. Rev. D 19, 3524 (1979)
  • [19] F. W. Hehl, P. von der Heyde, G. D. Kerlick, Rev. Mod. Phys. 48,393 (1976)[Crossref]
  • [20] F. W. Hehl et al., Phys. Rep. 258, 1 (1995)
  • [21] F. W. Hehl, arXiv:1204.3672v2 [gr-qc][WoS]
  • [22] J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley &Sons Ltd., New York, 1999)
  • [23] E. O. Kahya, M. Khurshudyan, B. Pourhassan, R. Myrzakulov, A.Pasqua, arXiv:1402.2592v4 [gr-qc][WoS]
  • [24] M. Li et al., JHEP 1107, 108 (2011)
  • [25] A. D. Linde, Phys. Lett. B 108, 389 (1982)[Crossref]
  • [26] J. Martin, arXiv:1205.3365v1 [astro-ph]
  • [27] F. I. Mikhail, Ain Shams Sci. Bul. 6, 87 (1962)
  • [28] F. I. Mikhail, M. I.Wanas, Proc. Roy. Soc. Lond. A 356, 471 (1977)
  • [29] F. I. Mikhail, M. I. Wanas, Int. J. Theor. Phys. 20, 671 (1981)[Crossref]
  • [30] F. I. Mikhail, M. I. Wanas, A. M. Eid, Astrophys.Space Sci. 228,221 (1995)
  • [31] R. Myrzakulov, arXiv:1212.2155v1 [gr-qc][WoS]
  • [32] R. Myrzakulov, D. Sáez-Gómez, P. Tsyba, arXiv:1311.5261v1 [grqc]
  • [33] G.G.L. Nashed, Chin. Phys. Lett. 29, No.5, 050402 (2012)[Crossref]
  • [34] G.G.L. Nashed, Phys. Rev. D 88, 104034 (2013)
  • [35] G.G.L. Nashed, Astrophys. Space Sci. 348, 591 (2013)
  • [36] G.G.L. Nashed, W. El Hanafy, Eur. Phys. J. C 74, No.10, 3099(2014)[Crossref]
  • [37] Y. C. Ong et al., Phys.Rev. D 88, 24019 (2013)
  • [38] M. Ostrogradski, Mem. Ac. St. Petersbourg VI 4, 385 (1850)
  • [39] H. Reissner, Ann. Phys. (Berlin) 59, 106 (1916)[Crossref]
  • [40] A. G. Riess et al., Astron. J. 116, 1009 (1998)[Crossref]
  • [41] H. P. Robertson, Ann. Math. Princeton (2) 33, 496 (1932)[Crossref]
  • [42] R. H. Sanders, E. Noordermeer, Mon. Not. Roy. Astron. Soc. 379,402 (2007)
  • [43] T. P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010)[Crossref]
  • [44] M. I. Wanas, Ph.D. thesis, Cairo university (Giza, Egypt, 1975)
  • [45] M. I. Wanas, Int. J. Theor. Phys. 24, 639 (1985)[Crossref]
  • [46] M. I. Wanas, M. Melek, M.E. Kahil, Astrophys.Space Sci. 228,273 (1995)
  • [47] M. I. Wanas, M. I. Kahil, Gen. Rel. Grav. 31, 1921 (1999)[Crossref]
  • [48] M. I. Wanas, Stud. Cercet. Stiin. Ser. Mat. 10, 297 (2001)
  • [49] M. I. Wanas, Int. J. Geom. Meth. Mod. Phys. 6, 373 (2007)[Crossref]
  • [50] N. L. Youssef, A. M. Sid-Ahmed, Rep. Math. Phys. 60, 39 (2007)[Crossref]
  • [51] N. L. Youssef, A. M. Sid-Ahmed, Int. J. Geom. Meth. Mod. Phys.5,7, 1109 (2008)[Crossref]
  • [52] N. L. Youssef, W. A. Elsayed, Rep. Math. Phys. 72, 1 (2013)[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_phys-2015-0030
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.