Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 13 | 1 |

Article title

Experimental determination of thermal turbulence effects on a
propagating laser beam

Content

Title variants

Languages of publication

EN

Abstracts

EN
The effect of turbulence on propagating laser
beams has been a subject of interest since the evolution of
lasers back in 1959. In this work, an inexpensive and reliable
technique for producing interferograms using a point
diffraction interferometer (PDI) was considered to experimentally
study the turbulence effects on a laser beam
propagating through air. The formed interferograms from
a propagating beamwere observed and digitally processed
to study the strength of atmospheric turbulence. This technique
was found to be sensitive enough to detect changes
in applied temperature with distance between the simulated
turbulence and laser path. These preliminary findings
indicated that we can use a PDI method to detect
and localise atmospheric turbulence parameters. Such parameters
are very important for use in the military (defence
laser weapons) and this is vital for South Africa (SA)
since it has natural resources, is involved in peace keeping
and mediation for other countries, and hence must have
a strong defence system that will be able to locate, detect
and destroy incoming missiles and other threatening atmospheric
systems in order to protect its environment and
avoid the initiation of countermeasures on its land.

Publisher

Journal

Year

Volume

13

Issue

1

Physical description

Dates

accepted
3 - 2 - 2015
online
4 - 8 - 2015
received
8 - 9 - 2014

Contributors

  • School of Chemistry and Physics, University
    of KwaZulu-Natal, Scottsville, Pietermaritzburg 3209, RSA
author
  • School of Chemistry and Physics, University
    of KwaZulu-Natal, Scottsville, Pietermaritzburg 3209, RSA

References

  • [1] D.H. Titterton, A review of optical countermeasures, in Conferenceon Technologies for Optical Countermeasures, October 25,2004, London, UK (London, 2004)
  • [2] D.H. Titterton, The development of infrared countermeasuretechnology and systems, In A. Krier (Ed.) (Springer-Verlang,London, 2005)
  • [3] H. Weichel, Laser beam propagation in the atmosphere (SPIE,Berlin, 1990)
  • [4] R.J. Cook, J. Opt. Soc. Am. A 65, 942 (1975)[Crossref]
  • [5] E. Golbraik, H. Branover, A. Zilberman, Nonlinear Proc. Geoph.13, 297 (2006)
  • [6] R.L. Fante, Proc. IEEE 63, 1669 (1975)[Crossref]
  • [7] L.G. Wang, W.W. Zheng, J. Opt. A: Pure Appl. Opt. 11, 065703(2009)[Crossref]
  • [8] E.N. Nyobe, E. Pemha, PIER 53, 31 (2005)
  • [9] T. Shirai, J. Opt. Soc. Am. A 20, 1094 (2003)[Crossref]
  • [10] L.A. Chernov, Wave propagation in a random medium (McGraw-Hill, New York, 1960)
  • [11] V.I. Tatarskii,Wave propagation in a turbulent medium(McGraw-Hill, New York, 1961)
  • [12] V.I. Klyatskin, V.I. Tatarskii, Radiofizika 15, 1433 (1972)
  • [13] L.C. Andrews, M.A. Al-Habash, Wave. Random Media 11, 271(2001)[Crossref]
  • [14] A. Consortini, Y.Y. Sun, G. Conforti, J. Mod. Opt. 37, 1555 (1990)[Crossref]
  • [15] A. Consortini, G. Fusco, Y.Y. Sun, Wave. Random Media 7, 521(1997)[Crossref]
  • [16] C. Fan, Chinese J. Quantum Electro. 16, 519 (1999)
  • [17] J. Hona, E. Pemha, PIER 84, 289 (2008)
  • [18] F. Twyman, Astro. J. 48, 256 (1918)
  • [19] J. Burge, SPIE 2536, 127 (1995)
  • [20] A. Zilberman, N.S. Kopeika, P Soc. Photo-Opt. Ins. 5891, 129(2004)
  • [21] A. Zilberman, N. Kopeika, J. Appl. Remote Sens. 2, 023540(2008)[Crossref]
  • [22] B.A. Bachmann, S. Hammel, SPIE Proceedings 8161, 816109(2011)
  • [23] D. Coburn, D. Garnier, J. Dainty, SPIE Proceedings 598, 105(2005)
  • [24] T. Butterley, R.W. Wilson, J.L. Aviles, Proceedings of the OpticalTurbulence Characterization for Astronomical Applications, 58(2008)
  • [25] M.M. Miroshnikov, J. Opt. Tech. 77, 401 (2010)[Crossref]
  • [26] R.N. Smartt, J. Strong, J. Opt. Soc. Am. 62, 737 (1972)
  • [27] R.N. Smartt, W.H. Steel, Jpn. J. Appl. Phys. 14, 351 (1975)
  • [28] H. Kaushal, IEEE Photon. Technol. Lett. 23, 1691 (2011)[Crossref]
  • [29] T. Wang, Z. Chen, Opt. Comm. 282, 1255 (2009)
  • [30] L. Xianhe, P. Jixiong, Opt. Express 19, 26444 (2011)[Crossref]
  • [31] H. Yuskel, Studies of the effects of atmospheric turbulence onfree space optical communications, PHD Thesis (University ofMaryland, 2005)
  • [32] L.C. Andrews, R.L. Phillips, Laser beam propagation throughrandom media (SPIE Press, Bellingham, 1998)
  • [33] S.C. Ndlovu, N. Chetty, Cent. Eur. J. Phys. 12, 466 (2014)
  • [34] R.S. Lawrence, J.W. Strohbehn, Proc. IEEE 58, 1523 (1970)[Crossref]
  • [35] J.R. Kerr, J.R. Dunphy, JOSA 63, 1 (1973)
  • [36] U. Frisch, Turbulence (Cambridge University Press, Cambridge,1995)
  • [37] A. Chaibi, C. Mafusire, A. Forbes, J. Opt. 15, 105706 (2013)
  • [38] M. Carnevale, F. Montomoli, A. D’Ammaro, S. Salvadori, F.Martelli, ASME J. Turbomach. 135, 051021 (2013)
  • [39] C. Bernardini, M. Carnevale, S. Salvadori, F. Martelli, WSEAS T.Fluid Mech. 6, 160 (2011)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_phys-2015-0028
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.