Title variants
Languages of publication
Abstracts
Based on the bosonization approach, the N = 1
supersymmetric Burgers (SB) system is transformed to a
coupled pure bosonic system. The Painlevé property and
the Bäcklund transformations (BT) of the bosonized SB
(BSB) system are obtained through standard singularity
analysis. Explicit solutions such as the muti-solitarywaves
and error functionwaves are provided for the BT. The exact
solutions of the BSB system are obtained from the generalized
tanh expansion method.
supersymmetric Burgers (SB) system is transformed to a
coupled pure bosonic system. The Painlevé property and
the Bäcklund transformations (BT) of the bosonized SB
(BSB) system are obtained through standard singularity
analysis. Explicit solutions such as the muti-solitarywaves
and error functionwaves are provided for the BT. The exact
solutions of the BSB system are obtained from the generalized
tanh expansion method.
Journal
Year
Volume
Issue
Physical description
Dates
received
1 - 1 - 2015
online
22 - 5 - 2015
accepted
3 - 4 - 2015
Contributors
author
-
Institute of Nonlinear Science,
Shaoxing University, Shaoxing 312000, China
References
- [1] B.A. Kupershmidt, Phys. Lett. A 102, 213 (1984)
- [2] P. Mathieu, J. Math. Phys. 29, 2499 (1988)[Crossref]
- [3] I. Yamanaka, R. Sasaki, Prog. Theor. Phys. 79, 1167 (1988)[Crossref]
- [4] B.A. Kupershmidt, Mech. Res. Commun. 13, 47 (1986)[Crossref]
- [5] L. Hlavatý, Phys. Lett. A 137, 173 (1989)
- [6] S. Ferrara, L. Girardello, S. Sciuto, Phys. Lett. B 76, 303 (1978)
- [7] Y.I. Marnin, A.O. Radul, Commun. Math. Phys. 98, 65 (1985)[Crossref]
- [8] G.H.M. Roelofs, P.H.M. Kersten, J. Math. Phys. 33, 2185 (1992)[Crossref]
- [9] M. Chaichan, P.P. Kulish, Phys. Lett. B 78, 413 (1978)
- [10] I. Yamanaka, R. Sasaki, Prog. Theore. Phys. 79, 1167 (1988)[Crossref]
- [11] Q.P. Liu, Lett. Math. Phys. 35, 115 (1995)[Crossref]
- [12] Q.P. Liu, Y.F. Xie, Phys. Lett. A 325, 139 (2004)
- [13] Q.P. Liu, X.B. Hu, M.X. Zhang, Nonlinearity 18, 1597 (2005)[Crossref]
- [14] P.H.M. Kersten, Phys. Lett. A 134, 25 (1988)
- [15] S. Bellucci, E. Ivanov, S. Krivonos, A. Pichugin, Phys. Lett. B 312,463 (1993)
- [16] A.S. Carstea, Nonlinearity 13, (2000) 1645[Crossref]
- [17] F. Correa, M.S. Plyushchay, Ann. Phys. 322, 2493 (2007)
- [18] S. Andrea, A. Restuccia, A. Sotomayor, J. Math. Phys. 42, 2625(2001)[Crossref]
- [19] X.N. Gao, S.Y. Lou, Phys. Lett. B 707, 209 (2012)
- [20] B. Ren, J. Lin, J. Yu, AIP Advances 3, 042129 (2013)
- [21] X.N. Gao, S.Y. Lou, X.Y. Tang, JHEP 05, 029 (2013)
- [22] J. Weiss, M. Tabor, G. Carnevale, J. Math. Phys. 24, 522 (1983)[Crossref]
- [23] S.Wang, X.Y. Tang, S.Y. Lou, Chaos. Soliton. Fract. 21, 231 (2004)[Crossref]
- [24] X.P. Cheng, S.Y. Lou, C.L. Chen, X.Y. Tang, Phys. Rev. E 89,043202 (2014)
- [25] W.X. Chen, J. Lin, Abstr. Appl. Anal. 2014 645456 (2014)
- [26] A.S. Carstea, A. Ramani, B. Grammaticos, Chaos Soliton. Fractal.14, 155 (2002)[Crossref]
- [27] A.S. Carstea, arXiv:0006032 [nlin.SI]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_phys-2015-0027