Preferences help
enabled [disable] Abstract
Number of results
2015 | 13 | 1 |
Article title

Unsteady MHD boundary layer flow and heat
transfer over the stretching sheets submerged in
a moving fluid with Ohmic heating and frictional

Title variants
Languages of publication
This paper is devoted to the analysis of the unsteady
magnetohydrodynamic (MHD) boundary layer flow
and heat transfer on a permeable stretching sheet embedded
in a moving incompressible viscous fluid. The combined
effects of Ohmic heating, thermal radiation, frictional
heating and internal heat absorption/generation
are taken into account. The governing time dependent
nonlinear boundary layer equations are converted into a
systemof nonlinear ordinary differential equations by similarity
transformations. Some analytical results that give
the characteristics of the velocity field in the boundary
layer are presented and proved. The governing equations
are then solved by using the shooting technique along with
the fourth order Runge-Kutta method. The analytical properties
proved in this paper are consistent with those obtained
by the numerical method. Furthermore, the effects
of the various parameters on the velocity and temperature
fields are presented graphically and discussed in detail.
Physical description
25 - 12 - 2014
27 - 3 - 2015
28 - 5 - 2015
  • [1] L. J. Crane, Z. Angew. Math. Phys. 21, 645 (1970)[Crossref]
  • [2] B. K.Dutta, P. Roy, A. S. Gupta, Int. Commun. Heat Mass 12, 89(1985)[Crossref]
  • [3] E. M. A. Elbashbeshy, J. Phys. D: Appl. Phys. 31, 1951 (1998)[Crossref]
  • [4] J. Zhu, L. C. Zheng, X. X. Zhang, Appl. Math. Mech. Engl. Ed. 30,463 (2009)[Crossref]
  • [5] T. Hayat, M. Sajid, Int. J. Heat Mass Tran. 50, 75 (2007)[Crossref]
  • [6] F. Mabood, W. A. Khan, J. Taiwan Inst. Chem. E. 45, 1217 (2014)[Crossref]
  • [7] M. A. A. Hamad, M. Ferdows, Appl. Math. Mech. Engl. Ed. 33,923 (2012)[Crossref]
  • [8] M. Z. Salleh, R. Nazar, I. Pop, J. Taiwan Inst. Chem. E. 41, 651(2010)[Crossref]
  • [9] A. Mastroberardino, Appl. Math. Mech. Engl. Ed. 35, 133 (2014)[Crossref]
  • [10] M. S. Abel, M. M. Nandeppanavar, Commun. Nonlinear Sci. Numer.Simul. 14, 2120 (2009)[Crossref]
  • [11] W. A. Khan, I. Pop, J. Heat Mass Tran. 53, 2477 (2010)
  • [12] K. V. Prasad, K. Vajravelu, P. S. Datti, Int. J. Therm. Sci. 49, 609(2010)[Crossref]
  • [13] X. H. Su, L. C. Zheng, Cent. Eur. J. Phys. 11, 1694 (2013)
  • [14] X. H. Su, L. C. Zheng, X. X. Zhang, J. H. Zhang, Chem. Eng. Sci.78, 1 (2012)[Crossref]
  • [15] Y. I. Seini, O. D. Makinde, Math. Probl. Eng. Phys. 2013, 163614(2013)
  • [16] G. Singh, O. D. Makinde, Ann. Fac. Eng. Hunedoara-Int. J. Eng.11, 41 (2013)
  • [17] H. I. Andersson, J. B. Aarseth, B. S. Dandapat, Int. J. Heat MassTran. 43, 69 (2003)[Crossref]
  • [18] E. M. A. Elbashbeshy, M. A. A. Bazid, Heat Mass Transfer 41, 1(2004)[Crossref]
  • [19] A. Ishak, R. Nazar, I. Pop, Nonlinear Anal. Real World Appl. 10,2909 (2009)[Crossref]
  • [20] M. E. Ali, E. Magyari, Int. J. Heat Mass Tran. 50, 188 (2007)[Crossref]
  • [21] S. Mukhopadhyay, Int. J. Heat Mass Tran. 52, 3261 (2009)[Crossref]
  • [22] X. Hang, S. J. Liao, I. Pop, Eur. J. Mech. B-Fluids 26, 15 (2007)[Crossref]
  • [23] D. Pal, P. S. Hiremath, Meccanica 45, 415 (2010)[Crossref]
  • [24] R. Tsai, K. H. Huang, J. S. Huang, Int. Commun. Heat Mass 35,1340 (2008)[Crossref]
  • [25] L. C. Zheng, L. J.Wang, X. X. Zhang, Commun. Nonlinear Sci. Numer.Simul. 16, 731 (2011)[Crossref]
  • [26] W. Ibrahim, B. Shanker, Comput. Fluids. 70, 21 (2012)[Crossref]
  • [27] A. Ogulu, O. D. Makinde, Chem. Eng. Commun. 196, 454 (2009)[Crossref]
  • [28] O. D. Makinde, Z. Naturforsch. A, 67a, 239 (2012)
  • [29] O. D. Makinde, Braz. J. Chem. Eng. 29, 159 (2012)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.