PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2015 | 13 | 1 |
Article title

Pulse Propagation in a Non-Linear Medium

Content
Title variants
Languages of publication
EN
Abstracts
EN
This paper considers a novel approach to solving
the general propagation equation of optical pulses in
an arbitrary non-linear medium. Using a suitable change
of variable and applying the Adomian decomposition
method to the non-linear Schrödinger equation, an analytical
solution can be obtained which takes into accountparameters
such as attenuation factor, the second order
dispersive parameter, the third order dispersive parameter
and the non-linear Kerr effect coefficient. By analysing the
solution, this paper establishes that this method is suitable
for the study of light pulse propagation in a non-linear
optical medium.
Publisher

Journal
Year
Volume
13
Issue
1
Physical description
Dates
accepted
10 - 12 - 2014
received
13 - 2 - 2014
online
5 - 2 - 2015
Contributors
author
  • Département de Physique,
    Faculté des Sciences et Techniques, Université d’Abomey-Calavi,
    Bénin
  • International Chair of Mathematical Physics and
    Applications (ICMPA-Unesco Chair), Université d’Abomey-Calavi,
    Bénin
  • Département de Physique,
    Faculté des Sciences et Techniques, Université d’Abomey-Calavi,
    Bénin
  • International Chair of Mathematical Physics and
    Applications (ICMPA-Unesco Chair), Université d’Abomey-Calavi,
    Bénin
  • International Chair of Mathematical Physics and
    Applications (ICMPA-Unesco Chair), Université d’Abomey-Calavi,
    Bénin
References
  • [1] G. Zhang and X. Zhang, Opt. Commun., 270, 379-383 (2007).
  • [2] J. R. Bogning, Chaos Solitons and Fractals, 27,148-153 (2006).
  • [3] V. I. Kruglov, A.C. Peacock and J.D. Harvey, Phys. Rev. E-Stat.Nonlinear Soft Matter Phys.,71, 056619-056630, (2005).
  • [4] G. Adomian, Kluwer Aca-demic, Dordrecht, (1994).
  • [5] G. Adomian, Math. Comput. Simulat. 30, 325-329, (1988).
  • [6] G. Adomian and R. Rach, J. Math. Anal. Appl. 174, 118-137,(1993).
  • [7] G. Adomian and R. Rach,23, 615-619, (1994).
  • [8] K. Scott and Y. P. Sun. In: C. G. Vayenas, R. E. White and M. E.Gamboa-Adelco (Eds.), Modern Aspects of Electrochemistry 41,Springer, New York, 222-304, (2007).
  • [9] K. Abbaoui and Y. Cherruault, Comput.Math. Appl., 28, 103-109,(1994).
  • [10] A. Abdelrazec and D. Pelinosky, Numer. Methods Partial DifferentialEquations,27, 749-766, (2011).
  • [11] Y. Cherruault, Convergence of Adomian’s method, (Kybernetes,18(2), 31-38, (1989).[Crossref]
  • [12] S. Ghosh, D. Roy, A., and D. Roy, Comput. Meth.Appl.Mech.Engrg., 196, 1133-1153, (2007).
  • [13] H. Jafari, and V. Daftardar-Gejji, Appl. Math. Comput., 175, 17,598-608, (2006).
  • [14] S. Pamuk, Phys.Lett. A, 344, 184-188, (2005).
  • [15] X. Zhang, J. Comput. Appl. Math.,180, 377-389, (2005).
  • [16] D. Kaya, and A. Yokus, Math. Comput. Simul., 60, 507-512,(2002).
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_phys-2015-0018
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.