PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2015 | 13 | 1 |
Article title

Schrödinger spectrum generated by the Cornell potential

Content
Title variants
Languages of publication
EN
Abstracts
EN
The eigenvalues Ednl (a, c) of the d-dimensional Schrödinger equation with the Cornell potential V(r) = −a/r + c r, a, c > 0 are analyzed by means of the envelope method and the asymptotic iteration method (AIM). Scaling arguments show that it is suffcient to know E(1, λ), and the envelope method provides analytic bounds for the equivalent complete set of coupling functions λ(E). Meanwhile the easily-implemented AIM procedure yields highly accurate numerical eigenvalues with little computational effort.
Publisher
Journal
Year
Volume
13
Issue
1
Physical description
Dates
published
1 - 1 - 2015
accepted
12 - 8 - 2014
online
28 - 10 - 2014
received
9 - 5 - 2014
References
  • [1] J. Alford, M. Strickland, Phys. Rev. D 88, 105017 (2013)
  • [2] H.-S. Chung, J. Lee, J. Korean Phys. Soc. 52, 1151 (2008)[Crossref]
  • [3] E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K.D. Lane, T.- M. Yan, Phys. Rev. Lett. 34, 369 (1975) [Erratum-ibid. 36, 1276 (1976)].[Crossref]
  • [4] E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K.D. Lane, T.-M. Yan, Phys. Rev. D 17, 3090 (1978)
  • [5] E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K.D. Lane, T.-M. Yan, Phys. Rev. D 21, 203 (1980)
  • [6] P.W.M. Evans, C.R. Allton, J.-I. Phys. Rev. D 89, 071502 (2014)
  • [7] J.-K. Chen, Phys. Rev. D 88, 076006 (2013)
  • [8] M. Hamzavi, A.A. Rajabi, Ann Phys.-New York 334, 316 (2013)
  • [9] C.O. Dib, N.A. Neill, Phys. Rev. D 86, 094011 (2012)
  • [10] G.S. Bali, Phys. Rep. 343, 1 (2001)[Crossref]
  • [11] D. Kang, E. Won, J. Comput. Phys. 20, 2970 (2008) 2970.[Crossref]
  • [12] R.L. Hall, Phys. Rev. D 30, 433 (1984)[Crossref]
  • [13] H. Ciftci, R.L. Hall, N. Saad, J. Phys. A: Math. Gen. 36, 11807 (2003)[Crossref]
  • [14] R.L. Hall, Phys. Rev. D 22, 2062 (1980)
  • [15] R.L. Hall, J. Math. Phys. 24, 324 (1983)[Crossref]
  • [16] R.L. Hall, J. Math. Phys. 25, 2078 (1984)[Crossref]
  • [17] R.L. Hall, Phys. Rev. A 39, 5500 (1989)[Crossref]
  • [18] R.L. Hall, J. Math. Phys. 34, 2779 (1993)[Crossref]
  • [19] K. Atkinson, W. Han, Spherical harmonics and approximations on the unit sphere: An introduction (Springer, New York, 2012)
  • [20] D.J. Doren, D.R. Herschbach, J. Chem. Phys. 85, 4557 (1986)
  • [21] M. Reed, B. Simon, Methods of Modern Mathematical Physics, IV. Analysis of Operators, The appropriate discrete-spectrumresult for the linear-plus-Coulomb potential is given by Theorem XIII.69 (Academic Press, New York, 1978) 250
  • [22] M. Abramowitz, I. Stegun, Handbook ofmathematical functions (Dover Publications, New York, 1965)
  • [23] L.D. Landau, E.M. Lifshitz, QuantumMechanics: non-relativistic theory (Pergamon, London, 1981)
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_phys-2015-0012
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.