Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 13 | 1 |

Article title

Schrödinger spectrum generated by the Cornell potential

Content

Title variants

Languages of publication

EN

Abstracts

EN
The eigenvalues Ednl (a, c) of the d-dimensional Schrödinger equation with the Cornell potential V(r) = −a/r + c r, a, c > 0 are analyzed by means of the envelope method and the asymptotic iteration method (AIM). Scaling arguments show that it is suffcient to know E(1, λ), and the envelope method provides analytic bounds for the equivalent complete set of coupling functions λ(E). Meanwhile the easily-implemented AIM procedure yields highly accurate numerical eigenvalues with little computational effort.

Publisher

Journal

Year

Volume

13

Issue

1

Physical description

Dates

published
1 - 1 - 2015
accepted
12 - 8 - 2014
online
28 - 10 - 2014
received
9 - 5 - 2014

Contributors

  • Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve Boulevard West, Montréal, Québec, Canada
author
  • Department of Mathematics and Statistics, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI, Canada

References

  • [1] J. Alford, M. Strickland, Phys. Rev. D 88, 105017 (2013)
  • [2] H.-S. Chung, J. Lee, J. Korean Phys. Soc. 52, 1151 (2008)[Crossref]
  • [3] E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K.D. Lane, T.- M. Yan, Phys. Rev. Lett. 34, 369 (1975) [Erratum-ibid. 36, 1276 (1976)].[Crossref]
  • [4] E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K.D. Lane, T.-M. Yan, Phys. Rev. D 17, 3090 (1978)
  • [5] E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K.D. Lane, T.-M. Yan, Phys. Rev. D 21, 203 (1980)
  • [6] P.W.M. Evans, C.R. Allton, J.-I. Phys. Rev. D 89, 071502 (2014)
  • [7] J.-K. Chen, Phys. Rev. D 88, 076006 (2013)
  • [8] M. Hamzavi, A.A. Rajabi, Ann Phys.-New York 334, 316 (2013)
  • [9] C.O. Dib, N.A. Neill, Phys. Rev. D 86, 094011 (2012)
  • [10] G.S. Bali, Phys. Rep. 343, 1 (2001)[Crossref]
  • [11] D. Kang, E. Won, J. Comput. Phys. 20, 2970 (2008) 2970.[Crossref]
  • [12] R.L. Hall, Phys. Rev. D 30, 433 (1984)[Crossref]
  • [13] H. Ciftci, R.L. Hall, N. Saad, J. Phys. A: Math. Gen. 36, 11807 (2003)[Crossref]
  • [14] R.L. Hall, Phys. Rev. D 22, 2062 (1980)
  • [15] R.L. Hall, J. Math. Phys. 24, 324 (1983)[Crossref]
  • [16] R.L. Hall, J. Math. Phys. 25, 2078 (1984)[Crossref]
  • [17] R.L. Hall, Phys. Rev. A 39, 5500 (1989)[Crossref]
  • [18] R.L. Hall, J. Math. Phys. 34, 2779 (1993)[Crossref]
  • [19] K. Atkinson, W. Han, Spherical harmonics and approximations on the unit sphere: An introduction (Springer, New York, 2012)
  • [20] D.J. Doren, D.R. Herschbach, J. Chem. Phys. 85, 4557 (1986)
  • [21] M. Reed, B. Simon, Methods of Modern Mathematical Physics, IV. Analysis of Operators, The appropriate discrete-spectrumresult for the linear-plus-Coulomb potential is given by Theorem XIII.69 (Academic Press, New York, 1978) 250
  • [22] M. Abramowitz, I. Stegun, Handbook ofmathematical functions (Dover Publications, New York, 1965)
  • [23] L.D. Landau, E.M. Lifshitz, QuantumMechanics: non-relativistic theory (Pergamon, London, 1981)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_phys-2015-0012
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.