Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 13 | 1 |

Article title

Numerical study on the standing morphology of an oblique detonation wave under the influence of an incoming boundary layer

Content

Title variants

Languages of publication

EN

Abstracts

EN
The influence of an incoming boundary layer to the standing morphology of an oblique detonation wave (ODW) induced by a compression ramp is numerically studied in this paper. The Spalart-Allmaras (SA) turbulence model is used to perform simulation of detonationboundary- layer interactions. Three different wall conditions are applied to realize control on the boundary-layer separation scales. Accordingly, different standing morphologies of the ODWs are obtained, including smooth ODW (without transverse wave) under no-slip, adiabatic wall condition with large-scale separation, abrupt ODW (with transverse wave) under no-slip, cold wall condition with moderate-scale separation, and bow-shaped detached ODW under slipwall condition without a boundary layer.

Contributors

author
  • Science and Technology on Scramjet Laboratory, National University of Defense Technology, College of Aerospace Science and Engineering, National University of Defense Technology, 410073 Changsha, China
author
  • Science and Technology on Scramjet Laboratory, National University of Defense Technology, College of Aerospace Science and Engineering, National University of Defense Technology, 410073 Changsha, China
author
  • Science and Technology on Scramjet Laboratory, National University of Defense Technology, College of Aerospace Science and Engineering, National University of Defense Technology, 410073 Changsha, China

References

  • [1] F. W. Spaid, J. L. Frishett, AIAA J. 10, 915 (1972)[Crossref]
  • [2] G. S. Settles, S. M. Bogdonoff, I. E. Vas, AIAA J. 14, 50 (1976)[Crossref]
  • [3] G. S. Settles, T. J. Fitzpatrick, S. M. Bogdonoff, AIAA J. 17, 579 (1979)[Crossref]
  • [4] J. Green, Prog. Aerospace Sci. 11, 235 (1970)[Crossref]
  • [5] E.E. Zhukoski, AIAA J. 5, 1746 (1967)[Crossref]
  • [6] R.H. Korkegi, AIAA J. 13, 534 (1975)[Crossref]
  • [7] M. S. Holden, AIAA 10th Aerospace Sciences Meeting, No.72-74, January 17-19, 1972, San Diego, California, USA
  • [8] K. J. Plotkin, AIAA J. 13, 1036-1040 (1975)[Crossref]
  • [9] B. Ganapathisubramani, N. T. Clemens, D. S. Dolling, J. Flui. Mech. 585, 369- (2007)
  • [10] J. Fay, Phys. Fluids 2, 283 (1959)[Crossref]
  • [11] E. K. Dabora, J. A. Nicholls, R. B. Morrison, Proc. Combust. Inst. 10, 817 (1965)
  • [12] S. B.Murray, Ph.D. thesis, McGill University (Montreal, Canada, 1984)
  • [13] W. P. Sommers, R. B. Morrison, Phys. Fluids 5, 241 (1962)[Crossref]
  • [14] S. B. Murray, J. H. Lee, Prog. Astronaut. Areonaut. 106, 329 (1986)
  • [15] C. Li, K. Kailasanath, E. S. Oran, 31st Aerospace Sciences Meeting and Exhibit, No.93-0450, January 11-14, 1993, Reno, NV, USA
  • [16] J. Y. Choi, I. S. Jeung, Y. Yoon, Proc. Combust. Inst. 2181 (1998)
  • [17] F.Giovanni, Ph.D. thesis, University of Toronto (Toronto, Canada, 2003)
  • [18] D. T. Pratt, J.W. Humphrey, D. E. Glenn, J.Propulsion 7, 837 (1991)[Crossref]
  • [19] L. Figueira Da Silva, B. Deshaies, Combust.Flame 121, 152 (2000)
  • [20] A. F. Wang, W. Zhao, Z. L. Jiang, Acta Mech. 27, 611 (2011)[Crossref]
  • [21] H. H. Teng, Z. L. Jiang, J.Fluid Mech. 713, 659 2012)
  • [22] P. R. Spalart, S. R. Allmaras, AIAA J. 94 (1992)
  • [23] N. Peters, Turbulent combustion, 3rd edition (Cambridge university press, Cambridge, 2000)
  • [24] P. L. Roe, Annual Review of Fluid Mechanics, 18, 337 (1986)[Crossref]
  • [25] D. S. Dolling, M. T. Murphy, AIAA J. 21, 1628 (1983) [Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_phys-2015-0007
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.