Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 13 | 1 |

Article title

Application of Metal-Oxide-Semiconductor
structures containing silicon nanocrystals in
radiation dosimetry

Content

Title variants

Languages of publication

EN

Abstracts

EN
This article makes a brief review of the most important
results obtained by the authors and their collaborators
during the last four years in the field of the development
of metal-insulator-silicon structures with dielectric
film containing silicon nanocrystals, which are suitable
for applications in radiation dosimetry. The preparation
of SiOx films is briefly discussed and the annealing
conditions used for the growth of silicon nanocrystals are
presented. A two-step annealing process for preparation
of metal-oxide-semiconductor structures with three-layer
gate dielectrics is described. Electron Microscopy investigations
prove the Si nanocrystals growth, reveal the crystal
spatial distribution in the gate dielectric and provide
evidences for the formation of a top SiO2 layerwhen applying
the two-step annealing. Two types of MOS structures
with three region gate dielectricswere fabricated and characterized
by high frequency capacitance/conductancevoltage
(C/G-V) measurements. The effect of gamma and
ultraviolet radiation on the flatband voltage of preliminary
charged metal-oxide-semiconductor structures is investigated
and discussed.

Contributors

author
  • Institute of Solid State
    Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee
    Blvd, 1784 Sofia, Bulgaria
author
  • Institute of Engineering, Autonomous
    University of Baja California, Benito Juarez Blvd. esc.
    Calle de la Normal, s/n, C. P. 21280 Mexicali, B. C., Mexico
author
  • Institute of Engineering, Autonomous
    University of Baja California, Benito Juarez Blvd. esc.
    Calle de la Normal, s/n, C. P. 21280 Mexicali, B. C., Mexico
  • Institute of Solid State
    Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee
    Blvd, 1784 Sofia, Bulgaria
author
  • Institute of Engineering, Autonomous
    University of Baja California, Benito Juarez Blvd. esc.
    Calle de la Normal, s/n, C. P. 21280 Mexicali, B. C., Mexico
author
  • Institute of Solid State
    Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee
    Blvd, 1784 Sofia, Bulgaria
author
  • Institute of Engineering, Autonomous
    University of Baja California, Benito Juarez Blvd. esc.
    Calle de la Normal, s/n, C. P. 21280 Mexicali, B. C., Mexico
  • Institute of Engineering, Autonomous
    University of Baja California, Benito Juarez Blvd. esc.
    Calle de la Normal, s/n, C. P. 21280 Mexicali, B. C., Mexico
author
  • Institute of Solid State
    Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee
    Blvd, 1784 Sofia, Bulgaria
  • Institute of Engineering, Autonomous
    University of Baja California, Benito Juarez Blvd. esc.
    Calle de la Normal, s/n, C. P. 21280 Mexicali, B. C., Mexico

References

  • [1] O. F. Siebel, M. C. Schneider, C. Galup– Montoro, in Proc. IEEE10th International New Circuits and Systems Conference (NEWCAS),June 17-20, 2012, Montreal, Quebec, Canada (IEEE, USA,2012) 301
  • [2] A. Ismail et al., Cancer/Radiothér 13, 182 (2009)[Crossref]
  • [3] A. Holmes–Siedle, Nucl. Inst. & Meth., 121, 169 (1974)
  • [4] A. B. Rosenfeld, In: S. Tavernier, A. Gektin, B. Grinyov (Eds.),NATO Advanced Research Workshop on Radiation Detectors forMedical Applications, September 19-23, 2003, Alushta, Crimea,Ukraine (Springer, Dordrecht, The Netherlands, 2006) 111-147
  • [5] G. S. Ristić, http://www.apl.elfak.rs/RADFETs.pdf
  • [6] Thomson/Nielesen a Best Medical Canada company, TechnicalNote 4: Introduction to the MOSFET Dosimeter, TN#101248.04,https://docs.google.com/gview?url=http://www.mosfet.ca/global/pdf/technotes/te_4.pdf&chrome=true
  • [7] A. Holmes–Siedle, L. Adams, Int. J. Rad. Appl. Instrum., Part C:Radiation Physics and Chemistry 28, 235 (1986)
  • [8] G. S. Ristić, J. Phys. D: Appl. Phys. 41, 023001 (2008)[Crossref]
  • [9] N. T. Fourches, M. Nenoi (Ed.), Current Topics in Ionizing RadiationResearch (InTech, Rijeka, 2012) chap. 32, 741
  • [10] M. G. Buehler, B. R. Blaes, G. A. Soli, G. R. Tardio, IEEE Trans.Nucl. Sci. 40, 1442 (1993)[Crossref]
  • [11] R. A. Price, C. Benson, M. J. Joyce, K. Rodgers, IEEE Trans. Nucl.Sci. 51, 1420 (2004)[Crossref]
  • [12] J. Kassabov, N. Nedev, V. Smirnov, Radiat. Eff. Defects in Solids116, 155 (1991)
  • [13] N. G. Tarr, G. F. Mackay, K. Shortt, I. Thomson, IEEE Trans. Nucl.Sci. 45, 1470 (1998)[Crossref]
  • [14] N. G. Tarr, K. Shortt, Y. Wang, I. Thomson, IEEE Trans. Nucl. Sci.51, 1277 (2004)[Crossref]
  • [15] P. J. McNulty et al., Radiat. Prot. Dosim. 122, 460 (2006)[Crossref]
  • [16] R. Edgecock et al., Evaluation of commercial programmablefloating gate devices as radiation dosimeters. J. Instrumentation4, P02002 (2009)[Crossref][WoS]
  • [17] A. Kelleher, A. N. McDonnell, B. O’Neill, W. Lane, L. Adams, IEEETrans. Nucl. Sci. 41, 445 (1994)[Crossref]
  • [18] G. S. Ristić, J. Phys. D: Appl. Phys. 42, 135101 (2009)[Crossref]
  • [19] S. Alshaikh, M. Carolan, M. Petasecca, M. Lerch, P. Metcalfe,A. Rosenfeld, Australas Phys. Eng. Sci. Med. 37, 311 (2014)[Crossref]
  • [20] M. N. Martin, D. R. Roth, A. Garrison-Darrin, P. J. McNulty,A. G. Andreou, IEEE Trans. Nucl. Sci. 48, 2050 (2001)[Crossref]
  • [21] G.-W. Luo, Zh.-Yu Qi, X.-Wu Deng, A. Rosenfeld, Medical Physics41, 051710 (2014)[Crossref]
  • [22] A. Aktag et al., Nucl. Instrum. Meth. Phys. Res., Section B-BeamInteractions with Materials and Atoms 268, 3417 (2010)
  • [23] E. Monroy, F. Omnès, F. Calle, Semicond. Sci. Technol. 18, R33(2003)
  • [24] D. J. Turnbull, P. W. Schouten, Atmos. Chem. Phys. 8, 2759(2008)
  • [25] Ch.-H. Lin, and Ch. W. Liu, Sensors 10, 8797 (2010) and referencestherein[Crossref]
  • [26] D. Nesheva et al., Vacuum 68, 1 (2003)[Crossref]
  • [27] M. Curiel et al., Mat. Sci. Eng. B 174, 132 (2010)
  • [28] D. Nesheva et al., Semicond. Sci. Technol. 23, 045015 (2008)[Crossref]
  • [29] D. Mateos et al., NSTI-Nanotech 2013, vol.1, 396 (2013)
  • [30] D. Mateos et al., Physica E: Low-dimensional Systems andNanostructures 51, 111 (2013)
  • [31] D. Nesheva et al., In A.–A. Ameenah (Ed.), Quantum Dots – AVariety of New Applications (InTech, Rijeka, 2012) chap. 9, 183
  • [32] N. Nedev et al., J. Phys.: Conf. Series 253, 012034 (2010)
  • [33] N. Nedev et al., Sensor Lett. 10, 837 (2012)[Crossref]
  • [34] D. Mateos et al., Key Eng. Mat. 543, 150 (2013)
  • [35] S. M. Sze. Physics of Semiconductor Devices, 2nd edition (Wiley,New York, 1981)
  • [36] K. J. Yang, C. Hu, IEEE Trans. Electron. Dev. 46, 1500 (1999)[Crossref]
  • [37] J. R. Brews, MOS Physics and Technology (Wiley, New York,1982)
  • [38] E. Yilmaz, B. Kaleli, R. Turan, Nucl. Instrum. Meth. Phys. Res. B264, 287 (2007)
  • [39] A. Arias et al., Key Eng. Mat. 605, 380 (2014)
  • [40] A. Arias et al., Sensor Lett. (in press)
  • [41] V. V. Afanas’ev, M. Houssa, A. Stesmans, M. M. Heyns, App.Phys. Lett. 78, 3073 (2001)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_phys-2015-0006
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.