Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 2 | 1 |

Article title

Monitoring the diffusion behavior of Na,K-ATPase
by fluorescence correlation spectroscopy (FCS)
upon fluorescence labelling with eGFP or
Dreiklang

Content

Title variants

Languages of publication

EN

Abstracts

EN
Measurement of lateral mobility of membraneembedded
proteins in living cells with high spatial and
temporal precision is a challenging task of optofluidics.
Biological membranes are complex structures, whose
physico-chemical properties depend on the local lipid
composition, cholesterol content and the presence of integral
or peripheral membrane proteins, which may be involved
in supramolecular complexes or are linked to cellular
matrix proteins or the cytoskeleton. The high proteinto-
lipid ratios in biomembranes indicate that membrane
proteins are particularly subject to molecular crowding,
making it difficult to follow the track of individual
molecules carrying a fluorescence label. Novel switchable
fluorescence proteins such as Dreiklang [1], are, in principle,
promising tools to study the diffusion behavior of individual
molecules in situations of molecular crowding due
to excellent spectral control of the ON- and OFF-switching
process. In this work, we expressed an integral membrane
transport protein, the Na,K-ATPase comprising the human
α2-subunit carrying an N-terminal eGFP or Dreiklang tag
and human β1-subunit, in HEK293T cells and measured
autocorrelation curves by fluorescence correlation spectroscopy
(FCS). Furthermore,we measured diffusion times
and diffusion constants of eGFP and Dreiklang by FCS,
first, in aqueous solution after purification of the proteins
upon expression in E. coli, and, second, upon expression
as soluble proteins in the cytoplasm of HEK293T cells. Our
data show that the diffusion behavior of the purified eGFP
and Dreiklang in solution as well as the properties of the
proteins expressed in the cytoplasm are very similar. However,
the autocorrelation curves of eGFP- and Dreiklanglabeled
Na,K-ATPase measured in the plasma membrane
exhibit marked differences, with the Dreiklang-labeled
construct showing shorter diffusion times. This may be related
to an additional, as yet unrecognized quenching process
that occurs on the same time scale as the diffusion of the labeled complexes through the detection volume (1–
100 ms). Since the origin of this quenching process is currently
unclear, care has to be taken when the Dreiklang label
is intended to be used in FCS applications.

Publisher

Year

Volume

2

Issue

1

Physical description

Dates

accepted
20 - 10 - 2015
online
31 - 12 - 2015
received
6 - 10 - 2015

Contributors

  • Technical University of
    Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, D-10623
    Berlin, Germany
  • Technical University of
    Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, D-10623
    Berlin, Germany
  • Karolinska Institutet, Department of Clinical
    Neuroscience, Center for Molecular Medicine CMM L8:01, 17176
    Stockholm, Sweden
  • Technical University of
    Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, D-10623
    Berlin, Germany

References

  • [1] T. Brakemann, A. C. Stiel, G. Weber, M. Andresen, I. Testa,T. Grotjohann, M. Leutenegger, U. Plessmann, H. Urlaub, C.Eggeling, M. C. Wahl, S. W. Hell, S. Jakobs, A reversibly photoswitchableGFP-like protein with fluorescence excitation decoupledfrom switching, Nat. Biotechnol., 29, 2011, 942[Crossref]
  • [2] O. Shimomura, F. H. Johnson, Y. and Saiga, Extraction, purificationand properties of aequorin, a bioluminescent protein fromthe luminous hydromedusan, Aequorea, J. Cell. Comp. Physiol.,59, 1962, 223[Crossref]
  • [3] S. W. Hell, J. and Wichmann, Breaking the diffraction resolutionlimit by stimulated emission: stimulated-emission-depletionfluorescence microscopy, Opt. Lett. 19, 1994, 780[Crossref]
  • [4] T. A. Klar, S. W. and Hell, Subdiffraction resolution in far-fieldfluorescence microscopy, Opt. Lett. 24, 1999, 954[Crossref]
  • [5] T. A. Klar, S. Jakobs, M. Dyba, A. Egner, S.W. Hell, Fluorescencemicroscopy with diffraction resolution barrier broken by stimulatedemission, Proc. Natl. Acad. Sci. U. S. A., 97, 2000, 8206[Crossref]
  • [6] M. J. Rust, M. Bates, X. Zhuang, Sub-diffraction-limit imagingby stochastic optical reconstruction microscopy (STORM), Nat.Methods 3, 2006, 793
  • [7] S. T. Hess, T. P. Girirajan, M. D. Mason, Ultra-high resolutionimaging by fluorescence photoactivation localization microscopy,Biophys. J. 91, 2006, 4258[Crossref]
  • [8] O. Shimomura, Structure of the chromophore of Aequorea greenfluorescent protein, FEBS Letters, 104, 1979, 220[Crossref]
  • [9] C. D. Hu, Y. Chinenov, T. K. Kerppola, Visualization of interactionsamong bZIP and Rel family proteins in living cells usingbimolecular fluorescence complementation, Mol. Cell, 9, 2002,789[Crossref]
  • [10] J. D. Pedelacq, S. Cabantous, T. Tran, T. C. Terwilliger, G. S.Waldo, Engineering and characterization of a superfolder greenfluorescent protein, Nat. Biotechnol. 24, 2006, 79[Crossref]
  • [11] S. Cabantous, T. C. Terwilliger, G. S.Waldo, Protein tagging anddetection with engineered self-assembling fragments of greenfluorescent protein, Nat. Biotechnol. 23, 2005, 102[Crossref]
  • [12] G. S. Baird, D. A. Zacharias, R. Y. Tsien, Circular permutation andreceptor insertion within green fluorescent proteins, Proc. Natl. Acad. Sci. U. S. A., 96, 1999, 11241[Crossref]
  • [13] J. Nakai, M. Ohkura, K. Imoto, A high signal-to-noise Ca(2+)probe composed of a single green fluorescent protein, Nat.Biotechnol., 19, 2001, 137[Crossref]
  • [14] Y. Zhao, Y. Yang, Profiling metabolic states with genetically encodedfluorescent biosensors for NADH, Curr.Opin. Biotechnol.,31, 2015, 86[Crossref]
  • [15] D.Magde,W.W. Webb, E. Elson, Thermodynamic Fluctuations ina Reacting System - Measurement by Fluorescence CorrelationSpectroscopy, Phys. Rev. Lett., 29, 1972, 705[Crossref]
  • [16] S. R. Aragón, R. Pecora, Fluorescence correlation spectroscopyas a probe ofmolecular dynamics, J. Chem. Phys., 64, 1976, 1791
  • [17] G. Bonnet, O. Krichevsky, A. Libchaber, Kinetics of conformationalfluctuations in DNA hairpin-loops, Proc. Natl. Acad. Sci.U.S.A., 95, 1998, 8602[Crossref]
  • [18] M. Ehrenberg, R. Rigler, Rotational Brownian motion and fluorescenceintensity fluctuations, Chem. Phys., 4, 1974, 390[Crossref]
  • [19] U. Haupts, S. Maiti, P. Schwille, W. W. Webb, Dynamics of fluorescencefluctuations in green fluorescent protein observedby fluorescence correlation spectroscopy, Proc. Natl. Acad. Sci.U.S.A., 95, 19098, 13573
  • [20] P. Kask, P. Piksarv, M. Pooga, Ü. Mets, E. Lippmaa, Separationof the rotational contribution in fluorescence correlation experiments,Biophys. J., 55, 1989, 213[Crossref]
  • [21] D.Magde, Chemical kinetics and fluorescence correlation spectroscopy,Quart. Rev. Biophys., 9, 1976, 35[Crossref]
  • [22] B. Rauer, E. Neumann, J.Widengren, R. Rigler, Fluorescence correlationspectrometry of the interaction kinetics of tetramethylrhodaminalpha-bungarotoxin with Torpedo californica acetylcholinereceptor, Biophys. Chem., 58, 1996, 3[Crossref]
  • [23] J. Widengren, Ü. Mets, R. Rigler, Fluorescence correlation spectroscopyof triplet states in solution: a theoretical and experimentalstudy, J. Phys. Chem., 99, 1995, 13368
  • [24] J. Widengren, R. Rigler, Ü. Mets, Triplet-state monitoring by fluorescencecorrelation spectroscopy, J. Fluoresc., 4, 1994, 255[Crossref]
  • [25] E. Haustein, P. Schwille, Ultrasensitive investigations of biologicalsystems by fluorescence correlation spectroscopy, Methods,29, 2003, 153[Crossref]
  • [26] C. Eggeling, S. Berger, L. Brand, J. R. Fries, J. Schaffer, A.Volkmer, C. A. Seidel, Data registration and selective singlemoleculeanalysis using multi-parameter fluorescence detection,J. Biotechnol., 86, 2001, 163
  • [27] B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, W. E. Moerner,Photon antibunching in single CdSe/ZnS quantum dot fluorescence,Chem. Phys. Letters, 329, 2000, 399
  • [28] S. J. Singer, G. L. Nicolson, The fluid mosaic model of the structureof cell membranes, Science, 175, 1972, 720
  • [29] A. D. Dupuy, D. M. Engelman, Protein area occupancy at the centerof the red blood cell membrane, Proc. Natl. Acad. Sci. U. S.A., 105, 2008, 2848[Crossref]
  • [30] E. Zinser, C. D. Sperka-Gottlieb, E. V. Fasch, S. D. Kohlwein, F.Paltauf, F., G. Daum, Phospholipid synthesis and lipid compositionof subcellular membranes in the unicellular eukaryote Saccharomycescerevisiae, J. Bacteriol., 173, 1991, 2026
  • [31] P. G. Saffman, M. Delbrück, Brownian motion in biological membranes,Proc. Natl. Acad. Sci. U. S. A., 72, 1975, 3111[Crossref]
  • [32] Y. Gambin, R. Lopez-Esparza, M. Reffay, E. Sierecki, N. S. Gov, M.Genest, R. S. Hodges, W. Urbach, Lateral mobility of proteins inliquid membranes revisited, Proc. Natl. Acad. Sci. U. S. A., 103,2006, 2098[Crossref]
  • [33] M. Khalid, F. Cornelius, R. J. Clarke, Dual mechanisms of allostericacceleration of the Na(+),K(+)-ATPase by ATP, Biophys.J., 98, 2010, 2290[Crossref]
  • [34] M. De Fusco, R. Marconi, L. Silvestri, L. Atorino, L. Rampoldi, L.Morgante, A. Ballabio, P. Aridon, G. Casari, Haploinsuflciency ofATP1A2 encoding the Na+/K+ pump alpha2 subunit associatedwith familial hemiplegic migraine type 2, Nat. Genet. 33, 2003,192
  • [35] J. P. Morth, H. Poulsen, M. S. Toustrup-Jensen, V. R. Schack,J. Egebjerg, J. P. Andersen, B. Vilsen, P. Nissen, The structureof the Na+,K+-ATPase and mapping of isoform differences anddisease-related mutations, Philos. Trans. R. Soc. Lond. B Biol.Sci., 364, 2009, 217
  • [36] N. N. Tavraz, K. L. Dürr, J. B. Koenderink, T. Freilinger, E. Bamberg,M. Dichgans, T. Friedrich, Impaired plasma membrane targetingor protein stability by certain ATP1A2 mutations identifiedin sporadic or familial hemiplegic migraine, Channels(Austin), 3, 2009, 82
  • [37] N. N. Tavraz, T. Friedrich, K. L. Dürr, J. B. Koenderink, E. Bamberg,T. Freilinger, M. Dichgans, Diverse functional consequences ofmutations in the Na+/K+-ATPase alpha2-subunit causing familialhemiplegic migraine type, J. Biol. Chem., 283, 2008, 31097
  • [38] D. P. Calderon, R. Fremont, F. Kraenzlin, K. Khodakhah, The neuralsubstrates of rapid-onset Dystonia-Parkinsonism, Nat. Neurosci.,14, 2011, 357
  • [39] P. de Carvalho Aguiar, K. J. Sweadner, J. T. Penniston, J. Zaremba,L. Liu, M. Caton, G. Linazasoro, M. Borg, M. A. Tijssen, S. B.Bressman, W. B. Dobyns, A. Brashear, L. J. Ozelius, Mutationsin the Na+/K+ -ATPase alpha3 gene ATP1A3 are associated withrapid-onset dystonia parkinsonism, Neuron, 43, 2004, 169
  • [40] E. L. Heinzen, A. Arzimanoglou, A. Brashear, S. J. Clapcote, F.Gurrieri, D. B. Goldstein, S. H. Johannesson, M. A. Mikati, B.Neville, S. Nicole, L. J. Ozelius, H. Poulsen, T. Schyns, K. J.Sweadner, A. van den Maagdenberg, B. Vilsen, Distinct neurologicaldisorders with ATP1A3 mutations, Lancet Neurol. 13,2014, 503
  • [41] M. K. Demos, C. D. van Karnebeek, C. J. Ross, S. Adam, Y. Shen,S. H. Zhan, C. Shyr, G. Horvath, M. Suri, A. Fryer, S. J. Jones, J. M.Friedman, A novel recurrent mutation in ATP1A3 causes CAPOSsyndrome, Orphanet J. Rare Dis., 9, 2014, 15
  • [42] X. Liu, Z. Spicarova, S. Rydholm, J. Li, H. Brismar, A. Aperia,Ankyrin B modulates the function of Na,K-ATPase/inositol 1,4,5-trisphosphate receptor signaling microdomain, J. Biol. Chem.,283, 2008, 11461
  • [43] P. J. Mohler, J. J. Schott, A. O. Gramolini, K. W. Dilly, S. Guatimosim,W. H. duBell, L, S. Song, K. Haurogne, F. Kyndt, M. E. Ali,T. B. Rogers, W. J. Lederer, D. Escande, H. Le Marec, V. Bennett,Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmiaand sudden cardiac death, Nature, 421, 2003, 634
  • [44] V. Vukojevic, M. Heidkamp, Y. Ming, B. Johansson, L. Terenius, R.Rigler, Quantitative single-molecule imaging by confocal laserscanning microscopy, Proc. Natl. Acad. Sci. U. S. A., 105, 2008,18176[Crossref]
  • [45] V. Vukojevic, Y. Ming, C. D’Addario, M. Hansen, U. Langel, R.Schulz, B. Johansson, R. Rigler, L. Terenius, Mu-opioid receptoractivation in live cells, FASEB J., 22, 2008, 3537[Crossref]
  • [46] J. R. Lakowicz, Principles of fluorescence spectroscopy, 3rd ed., 2006, Springer, New York
  • [47] D. Magde, E. L. Elson, W. W. Webb, Fluorescence correlationspectroscopy. II. An experimental realization, Biopolymers, 13, 1974, 29[Crossref]
  • [48] G.Majer, J. P. Melchior, Characterization of the fluorescence correlationspectroscopy (FCS) standard rhodamine 6G and calibrationof its diffusion coeflcient in aqueous solutions, J. Chem.Phys., 140, 2014, 094201
  • [49] R. Rigler, P. Grasselli, M. Ehrenberg, Fluorescence CorrelationSpectroscopy and Application to the Study of Brownian Motionof Biopolymers, Phys. Scr., 19, 1979, 486
  • [50] P. Kapusta, Absolute Diffusion Coeflcients: Compilation ofReference Data for FCS Calibration, Picoquant GmbH, 2010,http://www.picoquant.com/images/uploads/page/files/7353/appnote_diffusioncoeflcients.pdf, accessed on June 12,2015.
  • [51] J. Widengren, Ü. Mets, R. Rigler, Photodynamic properties ofgreen fluorescent proteins investigated by fluorescence correlationspectroscopy, Chem. Phys., 250, 1999, 171
  • [52] R.Swaminathan, C. P. Hoang, A. S. Verkman, Photobleaching recoveryand anisotropy decay of green fluorescent protein GFPS65Tin solution and cells: cytoplasmic viscosity probed bygreen fluorescent protein translational and rotational diffusion,Biophys. J., 72, 1997, 1900
  • [53] M. A. Hink, R. A. Griep, J. W. Borst, A. van Hoek, M. H. Eppink,A. Schots, A. J. Visser, Structural dynamics of green fluorescentprotein alone and fused with a single chain Fv protein, J. Biol.Chem. 275, 2000, 17556
  • [54] Glycerine Producers’ Association, Physical Propertiesof Glycerine and Its Solutions, New York, 1963,http://www.aciscience.org/docs/physical_properties_of_glycerine_and_its_solutions.pdf.
  • [55] D. A. Zacharias, J. D. Violin, A. C. Newton, R. Y. Tsien, Partitioningof lipid-modified monomeric GFPs into membrane microdomainsof live cells, Science, 296, 2002, 913
  • [56] M. S. Paller, Lateral mobility of Na,K-ATPase and membranelipids in renal cells. Importance of cytoskeletal integrity, J.Membr. Biol. 142, 1994, 127
  • [57] K. Weiss, A. Neef, Q. Van, S. Kramer, I. Gregor, J. Enderlein,Quantifying the diffusion of membrane proteins and peptidesin black lipid membranes with 2-focus fluorescence correlationspectroscopy, Biophys. J., 105, 2013, 455
  • [58] S. Ramadurai, A. Holt, V. Krasnikov, G. van den Bogaart, J. A.Killian, B. Poolman, Lateral diffusion of membrane proteins, J.Am. Chem. Soc. 131, 2009, 12650
  • [59] A. Naji, A. J. Levine, P. A. Pincus, Corrections to the Saffman-Delbruck mobility for membrane bound proteins, Biophys. J.,93, 2007, L49
  • [60] T. Shinoda, H. Ogawa, F. Cornelius, C. Toyoshima, Crystal structureof the sodium-potassiumpump at 2.4 Å resolution, Nature,459, 2009, 446
  • [61] P. Cicuta, S. L. Keller, S. L. Veatch, Diffusion of liquid domainsin lipid bilayer membranes, J. Phys. Chem. B, 111, 2007, 3328
  • [62] W. L. C. Vaz, F. Goodsaid-Zalduondo, K. Jacobson, Lateral diffusionof lipids and proteins in bilayer membranes, FEBS Letters,174, 1984, 199
  • [63] C. Jordan, B. Puschel, R. Koob, D. Drenckhahn, Identificationof a binding motif for ankyrin on the alpha-subunit of Na+,K+-ATPase, J. Biol. Chem., 270, 1995, 29971
  • [64] T. Cai, H. Wang, Y. Chen, L. Liu, W. T. Gunning, L. E. Quintas, Z. J.Xie, Regulation of caveolin-1 membrane traflcking by the Na/KATPase,J. Cell Biol. 182, 2008, 1153
  • [65] T. Friedrich, E. Bamberg, G. Nagel, Na+,K+-ATPase pump currentsin giant excised patches activated by an ATP concentrationjump, Biophys. J., 71, 1996, 2486
  • [66] J. Kockskämper, G. Gisselmann, H. G. Glitsch, Comparisonof ouabain-sensitive and -insensitive Na/K pumps in HEK293cells, Biochim. Biophys. Acta, 1325, 1997, 197
  • [67] N. A. Jensen, J. G. Danzl, K. I. Willig, F. Lavoie-Cardinal, T.Brakemann, S. W. Hell, S. Jakobs, Coordinate-targeted andcoordinate-stochastic super-resolution microscopy withthe reversibly switchable fluorescent protein Dreiklang,ChemPhysChem 15, 2014, 756[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_optof-2015-0001
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.