Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2015 | 3 | 1 |

Article title

Research in the Field of Organic Photovoltaics at
the Institute for Problems of Chemical Physics of
Russian Academy of Sciences


Title variants

Languages of publication



In the present review we highlight the main
research activities in the field of organic photonics and
photovoltaics at the Institute for Problems of Chemical
Physics of Russian Academy of Sciences (IPCP RAS). Extensive
investigation of optical and electrical properties of
π-conjugated organic compounds performed at IPCP RAS
since 1960’s resulted in design of many exciting materials
representing organic semiconductors, metals and superconductors.
Organic Schottky barrier and p/n junction
photovoltaic devices constructed at IPCP RAS in 1960’s
and 1970’s were among the first examples of reasonably
efficient organic solar cells at that time. These early discoveries
inspired younger generations of the researchers to
continue the work of their mentors and explore the world
of organic materials and photonic devices such as molecular
photonic switches, organic light emitting diodes, solar
cells, photodetectors, photoswitchable organic field-effect
transistors and memory elements.







Physical description


20 - 8 - 2015
6 - 2 - 2015
8 - 10 - 2015


  • Institute for Problems
    of Chemical Physics of Russian Academy of Sciences, Academician
    N. N. Semenov Prospect 1, Chernogolovka, Moscow region, 142432,


  • ---
  • [1] H. Letheby, On the production of a blue substance by the electrolysisof sulphate of aniline, J. Chem. Soc. 15, 1862, 161.[Crossref]
  • [2] Goppelsroeder F., Studien über die Anwendung der Elektrolysezur Darstellung, zur Veränderung und zur Zerstörungder Farbstoffe, ohne oder in Gegenwart von vegetabilischen oder animalischen Fasern, Die Internationale ElektrotechnischeAusstellung (16-19 Mai 1891, Frankfurt am Main, Deutschland),1891, 978-981.
  • [3] H. Naarmann, F. Beck, E.G. Kastning, 1964, BASF, DE 1 178 529.
  • [4] H. Naarmann, Structure and Conductivity of Organic Polymers,Angew. Chem. Int. Ed. Engl. 8, 1969, 915.
  • [5] T. Ito, H. Shirakawa, S. Ikeda, Simultaneous polymerizationand formation of polyacetylene film on the surface of concentratedsoluble Ziegler-type catalyst solution, J. Polym. Sci.Polym. Chem. 12, 1974, 11.[Crossref]
  • [6] V.V. Korshak, V.I. Kasatochkin, I.P. Kudriavt, K. Usenbaev, A.M.Sladkov, Synthesis and properties of polyacetylene. DokladyAkademii Nauk SSSR, 136, 1961, 1342.
  • [7] E.I. Balabanov, A.A. Berlin, V.P. Parini, V.L. Talrose, E.L. Frankevich,M.I. Cherkashin, Electric conductivity of polymers withconjugate bonds. Doklady Akademii Nauk SSSR, 134, 1960,1123.
  • [8] H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang andA.J. Heeger, Synthesis of electrically conducting organic polymers:halogen derivatives of polyacetylene, (CH)x, J. Chem.Soc. Chem. Commun. 1977, 578.[Crossref]
  • [9] R. Greene, G.B. Street, L.J. Suter, Superconductivity in PolysulfurNitride (SN)X, Phys. Rev. Lett. 34, 1975, 577.[Crossref]
  • [10] F. Wudl, D.Wobschall, E.J. Hufnagel, Electrical Conductivity bythe bis(1,3-dithiole)-bis(1,3-dithiolium) system, J. Am. Chem.Soc. 94 (2), 1972, 670.[Crossref]
  • [11] J. Ferraris, D.O. Cowan, V.V.Walatka, Jr., J.H. Perlstein, Electrontransfer in a new highly conducting donor-acceptor complex,J. Am. Chem. Soc. 95 (3), 1973, 948.[Crossref]
  • [12] D. Jérôme, A.Mazaud, M. Ribault and K. Bechgaard, Superconductivityin a synthetic organic conductor (TMTSF)2PF6, Journalde Physique Lettres 41, 4, 1980, 95.[Crossref]
  • [13] L.I. Buravov, M.L. Khidekel, I.F. Shchegolev, E.B. Yagubskii,Superconductivity and dielectric constant of highly conductivecomplexes of tetracyanoquinodimethane (TCQM), JETP Lett.12, 1970, 99.
  • [14] E.B. Yagubskii, I.F. Shchegolev, V.N. Laukhin, P.A. Kononovich,M.V. Karatsovnik, A.V. Zvarykina, L.I. Buravov, Normalpressuresuperconductivity in an organic metal (BEDTTTF)2L3
  • [bis(ethylene-dithiolo)tetrathiofulvalene triiodide],JETP Lett. 39, 1984, 12.
  • [15] R.N. Lyubovskaya, R.B. Lyubovskii, R.P. Shibaeva, M.Z. Aldoshina,L.M. Goldenberg, L.P. Rozenberg, M.L. Khidekel, Y.F.Shulpyakov, Superconductivity in a BEDT-TTF organic conductorwith a chloromercurate anion, JETP Lett. 42, 1985, 468.
  • [16] R.P. Shibaeva, E.B. Yagubskii, Molecular conductors and superconductorsbased on trihalides of BEDT-TTF and some of itsanalogues, Chem. Rev. 104, 2004, 5347.[Crossref]
  • [17] M. Pope and Charles E. Swenberg, Electronic processes in organiccrystals and polymers, New York Oxford 1999
  • [18] P.M. Borsenberger, V.S. Weiss, M. Dekker, Organic photoreceptors,IMC 1998
  • [19] H. Meier, Organic semiconductors, Verlag Chemie GmbH 1974
  • [20] J. Simon, J.J. Andre, Molecular semiconductors. Photoelectricalproperties and solar cells, In: J.M. Leen and C.W. Rees(Eds.), Berlin/Heidelberg/New York/Tokyo: Springer-Verlag1985
  • [21] N.A. Goryunova, Organic Semiconductors (OrganicheskiePoluprovodniki), Moskva, 1968 (in Russian)
  • [22] L.I. Boguslavskiy, A.V. Vannikov, Organic semiconductors andbiopolymers (Organicheskie poluprovodniki i biopolimeri),Moskva 1968 (in Russian)
  • [23] A. Dulov, A. Slinkin, Organic Semiconductors. Polymers withconjugated bonds (Organicheskie poluprovodniki. Polimeri ssopryazhennimi svyazyami), Moskva, Nauka 1970 (in Russian)
  • [24] F. Gutman and L. E. Lyons, Organic Semiconductors, (Wiley),New York, 1967.
  • [25] E.L. Frankevich, E.I. Balabanov, New effect of increasing photoconductivityof organic semiconductors in a wear magneticfield, JETP Letters-USSR 1, 1965, 169
  • [26] E.L. Frankevich, Nature of a new effect of a change in photoconductivityof organic semiconductors in amagnetic field, SovietPhysics JETP-USSR 23, 1966, 814
  • [27] E.L. Frankevich, B.M. Rumyantsev, Anthracene luminescencequenching by a magnetic field, JETP Letters-USSR 6, 1967, 553(in Russian)
  • [28] Y.B. Zeldovich, A.L. Buchachenko, E.L. Frankevich, Magneticand spin effects in chemistry and molecular physics, UspekhiFizicheskikh Nauk, 155, 1988, 3
  • [29] E.J. Fedotova, I.M. Stolovitskii, E.L. Frankevich, Magnetic-fieldeffect on the separated charge generation in photochemicalreactions involving chlorophyll A in solutions, DokladiAkademii Nauk SSSR, 254, 1980, 423
  • [30] L.I. Paramonova, Y.M. Stolovitsky, A.Y. Shkuropatov, E.L.Frankevich, Photoelectric properties of fucoxanthin layers,Biofizika, 28, 1983, 364
  • [31] E.L. Frankevich, D.I. Kadyrov, I.A. Sokolik, A.I. Pristupa, V.M.Kobryanskii, N.Y. Zurabyan, On the conductivity mechanismof weakly doped polyacetylene, Physica Status Solidi B, 132,1985, 283
  • [32] E.L. Frankevich, M.M. Tribel, I.A. Sokolik, B.B. Kotov, Photoconductivityof charge transfer complex crystals anthracenedimethylpyromellitimide,Physica Status Solidi A, 40, 1977,655[Crossref]
  • [33] D.I. Kadyrov, L.S. Koltsova, I.A. Sokolik, E.L. Frankevich, M.G.Chauser, Mechanism of the photogeneration of current carriersin films of polyphenylacetylene with chloranil, High Energ.Chem. 17, 1983, 56
  • [34] A.P. Tyutnev, V.P Sichkar, A.V. Vannikov, Electronic processesinduced by radiation in organic solid systems, Uspekhi Khimii50, 1981, 977
  • [35] A.N. Tikhonov, G.B. Khomutov, E.K. Ruuge, L.A. Blumenfeld,Electron transport control in chloroplasts-effects of photosyntheticcontrol monitored by intrathyllakoid pH, Biochimica etBiophysica Acta, 637, 1981, 321
  • [36] G.A. Chamberlain, Organic solar cells: A review, Solar cells, 8,1983, 47.
  • [37] V.A. Benderskii, N.N. Usov, M.I. Fedorov, Quantum yield of thebarrier photoeffect in phthalocyanine films, Dokladi AkademiiNauk SSSR, 183, 1968, 1117 (in Russian).
  • [38] N.N. Usov, V.A. Benderskii, Barrier effect in Phtalocyaninefilms, Sov. Phys. Semicond. USSR 2, 1968, 580.
  • [39] M.I. Fedorov, V.A. Benderskii, Kharakteristiki tonkoplenochnikhphotoelementov na osnove ftalotsianinamagniya, Physika i Technika Poluprovodnikov 7, 1970,1403 (in Russian).
  • [40] N.N. Usov, V.A. Benderskii, Photoeffect in metal-free phthalocyaninecrystals, Phys. Stat. Sol. 37, 1970, 535.[Crossref]
  • [41] M.I. Fedorov, V.A. Benderskii, Obrazovanie p-n Perekhoda priLegirovanii Sloev Ftalotsianina Magniya, Physika Poluprovodnikov12, 1970, 2007 (in Russian).
  • [42] M.I. Fedorov, V.A. Benderskii, Formation of p-n junctions bydoping magnesium phthalocyanine films, Sov. Phys. Semicond.USSR 4, 1971, 1720.
  • [43] V.A. Benderskii, M.I. Alyanov, M.I. Fedorov, L.M. Fedorov,Model organic transformers of light energy, Dok. Akad. NaukSSSR 239, 1978, 856 (in Russian).
  • [44] C.W. Tang, Two-layer organic photovoltaic cell, Appl. Phys.Lett. 48, 1986, 183.[Crossref]
  • [45] S.M. Aldoshin, O.A. Dyachenko, L.O. Atovmyan, V.I. Minkin,V.A. Bren, G.D. Paluy, Crystalline and molecular structure ofphotochromic 2-(N-acetyl-N-3-nitrophenylaminomethylene)-3,3-(2H)-benzo
  • [B]-thiophehone and its photoinitiated acylotropicrearrangemenr product, Zeitschrift fur kristallographie159, 1982, 143.
  • [46] S.M. Aldoshin, Spiropyrans - characteristics of their structureand photochemical properties, Uspekhi khimii 59, 1990, 1144.
  • [47] S.A. Krysanov, M.V. Alfimov, Ultrafast formation of transientsin spiropyran photochromism, Chem. Phys. Lett. 91, 1982, 77.[Crossref]
  • [48] S.A. Krysanov, M.V. Alfimov, Picosecond spectroscopy oftrans-thioindigo, Chem. Phys. Lett. 76, 1980, 221.[Crossref]
  • [49] S.M. Aldoshin, L.A. Nikonova, V.A. Smirnov, G.V. Shilov, N.K.Nagaeva, Structure and photochromic properties of singlecrystals of spiropyran salts, J. Mol. Struct. 750, 2005, 158.[Crossref]
  • [50] S.M. Aldoshin, Heading to photoswitchable magnets, J. Photochem.and Photobiol. A-Chemistry 200, 2008, 19.
  • [51] M.V. Alfimov, V.F. Razumov, Silverless photographic processbased on the photochemical initiation of phasetransformationof a substance, Dokladi Akademii Nauk SSSR260, 1981, 1383.
  • [52] M.V. Alfimov, V.F. Razumov, A photographic process based oncrystallization induced by photochemical reaction, J. Photograph.Sci. 31, 1983, 217.
  • [53] M.G. Spirin, S.B. Brichkin, V.F. Razumov, Synthesis and stabilizationof gold nanoparticles in reverse micelles of aerosol OTand triton X-100, Colloid Journal, 67, 2005, 485.[Crossref]
  • [54] L.M. Nikolenko, A.V. Ivanchihina, S.B. Brichkin, V.F. Razumov,Ternary AOT/water/hexane systems as "micellar sieves" forcyanine dye J-aggregates, J. Coll. Interface Sci. 332, 2009, 366-372.[Crossref]
  • [55] L.M. Nikolenko, V.F. Razumov, Colloidal quantum dots in solarcells, Rus. Chem. Rev. 82, 2013, 429.
  • [56] E.V. Rabenok, M.V. Gapanovich, S.I. Bocharova, Yu. V.Meteleva-Fischer, K.V. Bocharov, G.F. Novikov, Effect of Annealingon the Loss Kinetics of Charge Carriers in CdS Films,J. Renewable Sustainable Energy 5, 2013, 011206.
  • [57] G.F. Novikov, E.V. Rabenok, M.J. Jeng and L.B. Chang, The studyof loss kinetics of current carriers in cigs by microwave photoconductivitymethod, J. Renewable Sustainable Energy 4, 1,2012, 011604.
  • [58] I.K. Yakushchenko, M.G. Kaplunov, O.N. Efimov, M. Yu. Belov,S.N. Shamaev, Polytriphenylamine derivatives asmaterials forhole transporting layers in electroluminescent devices, Phys.Chem. Chem. Phys. 1, 1999, 1783.[Crossref]
  • [59] S.L. Nikitenko, S.S. Krasnikova, M.G. Kaplunov, I.K.Yakushchenko, Exciplex electroluminescence spectra ofthe new organic materials based on zinc complexes ofsulphanylamino-substituted ligands, Func. Mater. 19, 2012,202.
  • [60] M.G. Kaplunov, S.N. Nikitenko, S.S. Krasnikova, Exciplexelectroluminescence of the new organic materials for lightemittingdiodes, In: Jai Singh (ed.), Organic Light Emitting Devices,Chapter 7, ISBN 978-953-51-0850-4, 232 pages, InTech,November 14, 2012.
  • [61] M.G. Kaplunov, S.S. Krasnikova, I.K. Yakushchenko, S.N.Shamaev, A.P. Pivovarov, O.N. Efimov, O.N. Ermakov, S.A.Stakharny, New organic electroluminescent materials, Mol.Cryst. Liq.Cryst. 426, 2005, 287.[Crossref]
  • [62] M.E. El-Khouly, O. Ito, P.M. Smith, F. D’Souza, Intermolecularand supramolecular photoinduced electron transfer processesof fullerene–porphyrin/phthalocyanine systems, J.Photochem. Photobiol. C 5, 2004, 79.[Crossref]
  • [63] D.V. Konarev, I.S. Neretin, Y.L. Slovokhotov, E.I. Yudanova,N.V. Drichko, Y.M. Shul’ga et al., New molecular complexes offullerenes C60 and C70 with tetraphenylporphyrins
  • [M(tpp)], inwhich M = H2, Mn, Co, Cu, Zn, and FeCl, Chem. Eur. J. 7, 2001,2605.
  • [64] P.A. Troshin, A.S. Peregudov, D. Muhlbacher, R.N.Lyubovskaya, An eflcient
  • [2+3] cycloaddition approachto the synthesis of pyridyl-appended fullerene ligands, Eur. J.Org. Chem. 14, 2005, 3064.
  • [65] M. Prato, M. Maggini, Fulleropyrrolidines: a family of fullfledgedfullerene derivatives, Acc. Chem. Res. 31, 1998, 519.[Crossref]
  • [66] P.A. Troshin, A.S. Peregudov, S.I. Troyanov and R.N.Lyubovskaya, New pyrrolidine and pyrroline derivativesof fullerenes: from the synthesis to the use in light-convertingsystems, Russ. Chem. Bull., Int. Ed. 57, 2008, 887.[Crossref]
  • [67] P.A. Troshin, R.N. Lyubovskaya, Organic chemistry offullerenes: the major reactions, types of fullerene derivativesand prospects for their practical use, Russ. Chem. Rev.77(4), 2008, 305.
  • [68] P.A. Troshin, A.S. Peregudov, S.M. Peregudova,R.N. Lyubovskaya, Highly regio- and stereoselective
  • [2+3]cycloadditions of azomethine ylides to
  • [70]fullerene,Eur. J. Org. Chem. 2007, 5861.
  • [69] P.A. Troshin, S.I. Troyanov, G.N. Boiko, R.N. Lyubovskaya,A.N. Lapshin, N.F. Goldshleger, Eflcient
  • [2+3]cycloadditionapproach to synthesis of pyridinyl based
  • [60]fullerene ligands,Fuller. Nanot. Carb. Nanostruct. 12, 2004, 435.
  • [70] A.N. Lapshin, V.A. Smirnov, R.N. Lyubovskaya, N.F. Goldshleger,Spectroscopic study of the reaction of cis-1,3-di(2-pyridyl)
  • [60]fullereno
  • [1,2-c]pyrrolidine and 2-(2-pyridylmethyl)-1,3-di(2-pyridyl)
  • [60]fullereno
  • [1,2-c]pyrrolidinewith zinc meso-tetraphenylporphyrinate, Russ. Chem. Bull.,Int. Ed. 54, 2005, 2338.
  • [71] I.A. Mochalov, A.N. Lapshin, V.A. Nadtochenko, V.A. Smirnov,N.F. Goldshleger, Photochemical study of the zinc cis-3-(4-imidazolylphenyl)-1-(pyridin-2-yl)
  • [60]fullereno
  • [1,2-c]pyrrolidine-meso-tetraphenylporphyrinate dyad, Russ.Chem. Bull., Int. Ed. 55, 2006, 1598.
  • [72] D.V. Konarev, S.S. Khasanov, A.B. Kornev, M.A. Faraonov, P.A.Troshin, R.N. Lyubovskaya, Molecular and ionic complexes ofpyrrolidinofullerene bearing chelating 3 pyridyl units, DaltonTrans. 40, 2012, 791.[Crossref]
  • [73] R. Koeppe, P.A. Troshin, A. Fuchsbauer, R.N. Lyubovskaya,N.S. Sariciftci, Photoluminescence studies on the supramolecularinteractions between a pyrollidinofullerene and zincphthalocyanineused in organic solar cells, Fuller. Nanotub.Carb. Nanostruct. 14, 2006, 441.[Crossref]
  • [74] P.A. Troshin, R. Koeppe, A.S. Peregudov, S.M. Peregudova, M.Egginger, R.N. Lyubovskaya, N.S. Sariciftci, Supramolecularassociation of pyrrolidinofullerenes bearing chelating pyridylgroups and zinc phthalocyanine for organic solar cells, Chem.Mater. 19, 2007, 5363.[Crossref]
  • [75] R. Koeppe, P.A. Troshin, R.N. Lyubovskaya, N.S. Sariciftci,Complexation of pyrrolidinofullerenes and zincphthalocyaninein a bilayer organic solar cell structure, Appl.Phys. Lett. 87, 2005, 244102.[Crossref]
  • [76] D.M. Guldi, Fullerene-porphyrin architectures; photosyntheticantenna and reaction center models, Chem. Soc. Rev. 31,2002, 22.[Crossref]
  • [77] P.A. Troshin, N.S. Sariciftci, Supramolecular Chemistry forOrganic Photovoltaics, In: J.W. Steed. and P.A. Gale (eds),Supramolecular Chemistry: From Molecules to Nanomaterials.,Volume 5, Chapter 29, pp. 2725-2788, John Wiley & Sons,Ltd., Chichester, UK, 2012.
  • [78] P.A. Troshin, R. Koeppe et. al., unpublished results
  • [79] N. Li, P. Kubis, K. Forberich et al., Towards large-scale productionof solution-processed organic tandem modules based onternary composites: design of the intermediate layer, deviceoptimization and laser based module processing, Sol. Energ.Mater. Sol. Cells 120, 2014, 701.[Crossref]
  • [80] T. Ameri, P. Khoram, J. Min, C.J. Brabec, Organic ternary solarcells: a review, Adv. Mater. 25, 2013, 4245.
  • [81] A.C. Mayer, M.F. Toney, S.R. Scully, J. Rivnay, C.J. Brabec, M.Scharber et al., Bimolecular crystals of fullerenes in conjugatedpolymers and the implications of molecular mixing forsolar cells, Adv. Funct. Mater. 19, 2009, 1173.[Crossref]
  • [82] Ting Xiao, Haihua Xu, Giulia Grancini, Jiangquan Mai, AnnamariaPetrozza, U-Ser Jeng et al., Molecular packing and electronicprocesses in amorphous-like polymer bulk heterojunctionsolar cells with fullerene intercalation, Scientific Reports4, 2014, 5211.
  • [83] N.C. Miller, E. Cho, R. Gysel, C. Risko, V. Coropceanu, C.E.Miller et al., Factors governing intercalation of fullerenes andother small molecules between the side chains of semiconductingpolymers used in solar cells, Adv. Energy Mater. 2,2012, 1208.[Crossref]
  • [84] N.C. Cates, R. Gysel, Z. Beiley, C.E. Miller, M.F. Toney, M.Heeney et al., Tuning the properties of polymer bulk heterojunctionsolar cells by adjusting fullerene size to control intercalation,Nano Lett. 9, 2009, 4153.[Crossref]
  • [85] P.A. Troshin, E.A. Khakina, M. Egginger, A.E. Goryachev,S.I. Troyanov, A. Fuchsbauer et al., Thiophene- and furansubstitutedmethanofullerenes as novel materials for organicsolar cells, ChemSusChem 3, 2010, 356.[Crossref]
  • [86] S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T.Fromherz, J. Hummelen, 2.5% eflcient organic plastic solarcells, Appl. Phys. Lett. 78, 2001, 841.
  • [87] H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen,A. Hinsch et al., Nanoscale morphology of conjugatedpolymer/fullerene-based bulk-heterojunction solar cells, Adv.Funct. Mater., 2004, 14, 1005.[Crossref]
  • [88] H. Hoppe, T. Glatzel, M. Niggemann, A. Hinsch, M.Ch. Lux-Steiner, N.S. Sariciftci, Kelvin probe force microscopy study onconjugated polymer/fullerene bulk-heterojunction organic solarcells, Nano Lett. 5, 2005, 269.[Crossref]
  • [89] M. Theander, A. Yartsev, D. Zigmantas, V. Sundstrom, W.Mammo, M.R. Andersson et al., Photoluminescence quenchingat a polythiophene/C60 heterojunction, Phys. Rev. B 61,2000, 12 957.
  • [90] D.E. Markov, C. Tanase, P.W.M. Blom, J. Wildeman, Simultaneousenhancement of charge transport and exciton diffusion inpoly(p-phenylene vinylene) derivatives, Phys. Rev. B 72, 2005,045217.[Crossref]
  • [91] O.A.Mukhacheva, A.E. Goryachev, O. Usluer, D. Egbe and P. A.Troshin, in preparation
  • [92] P.A. Troshin, H. Hoppe, A.S. Peregudov, M. Egginger, S.Shokhovets, G. Gobsch, N.S. Sariciftci, V.F. Razumov,
  • [70]fullerene-based materials for organic solar cells, Chem-SusChem 4, 2011, 119.
  • [93] P.A. Troshin, O.A. Mukhacheva, O. Usluer, S. Rathgeber, A.E.Goryachev, A.V. Akkuratov et al., Improved photovoltaic performanceof the PPV-PPE-type copolymer using optimizedfullerene-based counterparts, Adv. Energ. Mater. 3, 2013, 161.
  • [94] P.A. Troshin and N.S. Sariciftci, Organic nanomaterials for efficientbulk heterojunction solar cells, In: T. Torres and G. Bottari(Eds.), Organic Nanomaterials: Synthesis, Characterization,and Device Applications, John Wiley & Sons, Inc., 2013,Hoboken, NJ, USA, Chapter 25, pp. 549-578
  • [95] L.M. Chen, Z. Hong, G. Li, Y. Yang, Recent progress in polymersolar cells: manipulation of polymer: fullerene morphologyand the formation of eflcient inverted polymer solar cells,Adv. Mater. 21, 2009, 1434.
  • [96] Y. Yao, J. Hou, Z. Xu, G. Li, Y. Yang, Effects of solvent mixtureson the nanoscale phase separation in polymer solar cells, Adv.Funct. Mater. 18, 2008, 1783.[Crossref]
  • [97] A.J. Moulé, K. Meerholz, Controlling morphology in polymerfullerenemixtures, Adv. Mater. 20, 2008, 240.
  • [98] J.K. Lee, W.L. Ma, C.J. Brabec, J. Yuen, J.S. Moon, J.Y. Kim etal., Processing additives for improved eflciency from bulk–heterojunction solar cells, J. Am. Chem. Soc. 130, 2008, 3619.[Crossref]
  • [99] F. Padinger, R.S. Rittberger, N.S. Sariciftci, Effects of postproductiontreatment on plastic solar cell, Adv. Funct. Mater. 13,2003, 85.[Crossref]
  • [100] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery etal., High-eflciency solution processable polymer photovoltaiccells by self-organization of polymer blends, Nat. Mater. 4,2005, 864.
  • [101] V.A. Kostyanovsky, D.K. Susarova, A.S. Peregudov, P.A.Troshin, Polymerizable fullerene-based material for organicsolar cells, Thin Solid Films 519, 2011, 4119.
  • [102] J.Y. Mayorova, S.L. Nikitenko, P.A. Troshin, S.M. Peregudova,A.S. Peregudov, M.G. Kaplunov et al., Synthesis and investigationof novel fullerene-based acceptor materials, MendeleevCommun. 17, 2007, 175.[Crossref]
  • [103] P.A. Troshin, R. Koeppe, D.K. Susarova, N.V. Polyakova, A.S.Peregudov, V.F. Razumov et al., Trannulenes: a new classof photoactive materials for organic photovoltaic devices, J.Mater. Chem. 19, 2009, 7738.[Crossref]
  • [104] P.A. Troshin, I.P.Romanova, D.K. Susarova, G.G. Yusupova, A.T.Gubaidullin, A.F. Saifina, The first phosphorous-containingfullerene derivative applied as electron acceptor material inorganic solar cells, Mendeleev Communications 20, 2010, 137.[Crossref]
  • [105] P.A. Troshin, H. Hoppe, J. Renz, M. Egginger, J. Yu. Mayorova,A.E. Goryachev et al., Material solubility-photovoltaic performancerelationship in design of novel fullerene derivatives for bulk heterojunction solar cells, Adv. Funct. Mater. 19, 2009,779.[Crossref]
  • [106] J.A. Renz, P.A. Troshin, G. Gobsch, V.F. Razumov, H. Hoppe,Fullerene solubility - current density relationship in polymersolar cells, Rapid. Res. Lett., Phys. Stat. Sol. (RRL) 2(6), 2008,263.[Crossref]
  • [107] D.K. Susarova, E.A. Khakina, P.A. Troshin, A.E. Goryachev,N.S. Sariciftci, V.F. Razumov et al., Photovoltaic performanceof PPE-PPV copolymers: effect of the fullerene component, J.Mater. Chem. 21, 2011, 2356.[Crossref]
  • [108] P.A. Troshin, D.K. Susarova, E.A. Khakina, A.E. Goryachev,O.V. Borshchev, S.A. Ponomarenko et al., Material solubilityand molecular compatibility effects in the design of thefullerene/polymer composites for organic bulk heterojunctionsolar cells, J. Mater. Chem. 22, 2012, 18433.[Crossref]
  • [109] C. Kästner, D.K. Susarova, R. Jadhav, D.A.M. Egbe, S. Rathgeber,P.A. Troshin et al., A simple approach for morphology evaluationof polymer-fullerene bulk heterojunctions: an ensembleof different bulk morphologies generated by a variation offullerene derivatives, J. Mater. Chem. 22, 2012, 15987.[Crossref]
  • [110] D.K. Susarova, P.A. Troshin, Y.L. Moskvin, S.D. Babenko, V.F.Razumov, Vertical concentration gradients in bulk heterojunctionsolar cells induced by differential material solubility, ThinSolid Films 519, 2011, 4132.
  • [111] D.K. Susarova, A.E. Goryachev, D.V. Novikov, N.N. Dremova,S.M. Peregudova, P.A. Troshin et al., Material solubility effectsin bulk heterojunction solar cells based on the biscyclopropanefullerene adducts and P3HT, Sol. Energ. Mater.Sol. Cells 120, 2014, 30.[Crossref]
  • [112] V.A. Kostyanovskiy, P.A. Troshin, G. Adam, N.S. Sariciftci, V.F.Razumov, Investigation of poly(cyclopentadithiophenes) aselectron donor materials for organic solar cells, Energy Procedia31C, 2012, 1.[Crossref]
  • [113] P.A. Troshin, O.A.Mukhacheva, A.E. Goryachev, N.N. Dremova,D. Voylov, C. Ulbricht, Material structure - compositemorphology-photovoltaic performance relationship fororganic bulk heterojunction solar cells, Chem. Commun. 48,2012, 9477.[Crossref]
  • [114] D. Gendron, M. Leclerc, New conjugated polymers for plasticsolar cells, Energy Environ. Sci. 4, 2011, 1225.[Crossref]
  • [115] N. Yeh, P. Yeh, Organic solar cells: Their developments and potentials,Renewable and Sustainable Energy Reviews 21, 2013,421.
  • [116] H.J. Son, B. Carsten, I.H. Jung, L. Yu., Overcoming eflciencychallenges in organic solar cells: rational development of conjugatedpolymers, Energy Environ. Sci. 5, 2012, 8158.[Crossref]
  • [117] C.J. Brabec, C.Winder, N.S. Sariciftci, J.C. Hummelen, A. Dhanabalan,P.A. van Hal et al., A low-bandgap semiconductingpolymer for photovoltaic devices and infrared emitting diodes,Adv. Funct. Mater. 12, 2002, 709.[Crossref]
  • [118] M.C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf,A.J. Heeger et al., Design rules for donors in bulkheterojunctionsolar cells - towards 10% energy-conversion efficiency,Adv. Mater., 18, 2006, 789.
  • [119] L.J.A. Koster, V.D. Mihailetchi and P.W.M. Blom, Ultimate efficiencyof polymer/fullerene bulk heterojunction solar cells,Appl. Phys. Lett. 88, 2006, 093511.[Crossref]
  • [120] M. Lenes, G.J.A.H. Wetzelaer, F.B. Kooistra, S.C. Veenstra, J.C.Hummelen, P.W.M. Blom, Fullerene bisadducts for enhancedopen-circuit voltages and eflciencies in polymer solar cells,Adv. Mater. 20, 2008, 2116.
  • [121] G. Zhao, Y. He, Y. Li, 6.5% eflciency of polymer solar cellsbased on poly(3-hexylthiophene) and indene-C60 bisadduct bydevice optimization, Adv. Mater. 22, 2010, 4355.
  • [122] J. Yang, R. Zhu, Z. Hong, Y. He, A. Kumar, Y. Li et al., A robustinter-connecting layer for achieving high performance tandempolymer solar cells, Adv. Mater. 20, 2011, 1.
  • [123] J.M. Frost, M.A. Faist, J. Nelson, Energetic disorder in higherfullerene adducts: a quantum chemical and voltammetricstudy, Adv. Mater. 22, 2010, 4881.
  • [124] M.A. Faist, P.E. Keivanisis, S. Foster, P.H. Wöbkenberg, T.D.Anthopoulos, D.C. Bradley et al., Effect of multiple adductfullerenes on charge generation and transport in photovoltaicblends with poly(3-hexylthiophene-2,5-diyl), J. Polym. Sci. BPolym. Phys. 49, 2011, 45-51.
  • [125] D.K. Susarova, A.E. Goryachev, P.A. Troshin and V.F. Razumov,Synthesis and photovoltaic performance of various bisadductsof
  • [60]fullerene. EMRS Spring Meeting and Bilateral(EMRS+MRS) Energy Conference, Symposium S (9-14 May2011, Nice, France).
  • [126] F.B. Kooistra, J. Knol, F. Kastenberg, L.M. Popescu, W.J.H. Verhees,J.M. Kroon et al., Increasing the open circuit voltage ofbulk-heterojunction solar cells by raising the LUMOlevel of theacceptor, Org. Lett., 9, 2007, 551.
  • [127] I. Riedel, E. von Hauff, J. Parisi, N. Martin, F. Giacalone, V.Dyakonov, Diphenylmethanofullerenes: new and eflcient acceptorsin bulk heterojunction solar cells, Adv. Funct. Mater.15, 2005, 1979.[Crossref]
  • [128] H.J. Bolink, E. Coronado, A.F. Aliaga, M. Lenes, A.L. Rosa,S. Filippone et al., Polymer solar cells based on diphenylmethanofullereneswith reduced sidechain length, J. Mater.Chem. 21, 2010, 1382.
  • [129] K.Matsumoto, K. Hashimoto, M. Kamo, Y. Uetani, S. Hayase, T.Itoh et al., Design of fulleropyrrolidine derivatives as an acceptormolecule in a thin layer organic solar cell, J. Mater. Chem.20, 2010, 9226.[Crossref]
  • [130] A.V. Mumyatov, O.A. Mukhacheva, D.K. Susarova, P.A. Troshinet. al., Chem. Comm. 2014, submitted
  • [131] A.V. Mumyatov, O.A. Mukhacheva, D.K. Susarova, P.A. Troshinet. al., Sol. Energy Mater. Sol. Cells, 2014, submitted
  • [132] A.V. Mumyatov, O.A. Mukhacheva, F.A. Prudnov, D.K.Susarova, P.A. Troshin et. al., J. Mater. Chem C., 2014,submitted
  • [133] M. Jørgensen, K. Norrman, S.A. Gevorgyan, T. Tromholt, B. Andreasenand F.C. Krebs, Stability of Polymer Solar Cells, Adv.Mater., 24, 2012, 580.
  • [134] R. Po, A. Bernardi, A. Calabrese, C. Carbonera, G. Corso andA. Pellegrino, From lab to fab: how must the polymer solar cellmaterials design change? - an industrial perspective, EnergyEnviron. Sci. 7, 2014, 925.[Crossref]
  • [135] J. Uk Lee, J.W. Jung, J.W. Jo and W.H. Jo, Degradation and stabilityof polymer-based solar cells, J. Mater. Chem. 22, 2012,24265.[Crossref]
  • [136] N. Blouin, A. Michaud and M. Leclerc, A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells,Adv. Mater. 19, 2007, 2295.
  • [137] C.H. Peters, I.T.S. Quintana, J.P. Kastrop, S. Beaupré, M.Leclerc and M.D. McGehee, High eflciency polymer solar cellswith long operating lifetimes, Adv. Energy Mater. 1, 2011, 491.[Crossref]
  • [138] T. Ameri, G. Dennler, C. Lungenschmied and C.J. Brabec, Organictandem solar cells: A review, Energy Environ. Sci. 2,2009, 347.[Crossref]
  • [139] S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.S. Moon etal., Bulk heterojunction solar cells with internal quantum eflciencyapproaching 100%, Nature Photonics 3, 2009, 297.[Crossref]
  • [140] J.H. Seo, A. Gutacker, Y. Sun, H. Wu, F. Huang, Y. Cao et al.,Improved High-Eflciency Organic Solar Cells via Incorporationof a Conjugated Polyelectrolyte Interlayer, J. Am. Chem. Soc.,2011, 133, 8416.
  • [141] G. Fang, J. Liu, Y. Fu, B. Meng, B. Zhang, Z. Xie et al., Flexible organicsolar cells using an oxide/metal/oxide trilayer as transparentelectrode, Organic Electronics 13, 2012, 2733.[Crossref]
  • [142] Z. He, C. Zhong, X. Huang, W.Y. Wong, H. Wu, L. Chen etal., Simultaneous enhancement of open-circuit voltage, shortcircuitcurrent density, and fill factor in polymer solar cells,Adv. Mater. 23, 2011, 4636.
  • [143] N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R.Neagu-Plesu, Toward a rational design of poly(2,7-carbazole)derivatives for solar sells, J. Am. Chem. Soc. 130, 2008, 732.[Crossref]
  • [144] T. Umeyama, Y. Watanabe, E. Douvogianni, H. Imahori, Effectof fluorine substitution on photovoltaic properties ofbenzothiadiazole-carbazole alternating copolymers, J. Phys.Chem. C 117, 2013, 21148[Crossref]
  • [145] W. Zhao, W. Cai, R. Xu, W. Yang, X. Gong, H. Wu et al., Novelconjugated alternating copolymer based on 2,7-carbazole and2,1,3-benzoselenadiazole, Polymer 51, 2010, 3196.[Crossref]
  • [146] E. Zhou, M. Nakamura, T. Nishizawa, Y. Zhang, Q. Wei, K.Tajima et al., Synthesis and photovoltaic properties of a novellow band gap polymer based on N-substituted dithieno
  • [3,2-b:2’,3’-d]pyrrole, Macromolecules 41, 2008, 8302.
  • [147] A.V. Akkuratov, D.K. Susarova, O. Kozlov, D.V. Novikov, Y.L.Moskvin, L.A. Frolova, A.V. Chernyak, M.S. Pchenitchnikov,P.A. Troshin, Design of (X-DADAD)n type copolymers with improvedoptoelectronic properties for bulk heterojunction organicsolar cells. Chem. Mater. 2014, submitted
  • [148] N. Banerji, E. Gagnon, P.Y. Morgantini, S. Valouch, A.R. Mohebbi,J.H. Seo et al., Breaking down the problem: optical transitions,electronic structure, and photoconductivity in conjugatedpolymer PCDTBT and in its separate building blocks, J.Phys. Chem. C 116, 2012, 11456.[Crossref]
  • [149] X. Liu, Y. Sun, L.A. Perez, W. Wen, M.F. Toney, A.J. Heegeret al., Narrow-band-gap conjugated chromophores with extendedmolecularlengths, J. Am. Chem. Soc. 134, 2012, 20609.[Crossref]
  • [150] A.V. Akkuratov, D.K. Susarova, D.V. Novikov, D.V. Anokhin, Y.L.Moskvin, A.V. Chernyak, F.A. Prudnov, S.D. Babenko and P.A.Troshin, Strong effect of the positioning of solubilizing alkylside chains on optoelectronic and photovoltaic properties ofTTBTBTT-based conjugated polymers, J. Mater. Chem. C. 2,2014, submitted.
  • [151] C. Krohnke, Polymer stabilization, In: in Encyclopedia ofMaterials:Science and Technology, Pergamon, 2001, p. 7507.
  • [152] S.S. Choi, J.H. Jang, Analysis of UV absorbers and stabilizers inpolypropylene by liquid chromatography/atmospheric pressurechemical ionization-mass spectrometry, Polymer Testing30, 2011, 673.[Crossref]
  • [153] P. Klán, J. Wirz, Photochemistry of Organic Compounds: FromConcepts to Practice.Wiley-Blackwell, Germany, 2009, p. 563.
  • [154] A. Albini, M. Fagnoni, Photochemically-Generated Intermediatesin Synthesis, Wiley-VCH Verlag GmbH & Co. KGaA, Germany2013, p. 380.
  • [155] M. Klessinger, J. Michl, Excited States and Photochemistry ofOrganic Molecules, Wiley-VCH Verlag GmbH & Co. KGaA, NewYork 1994, p. 357.
  • [156] A.A. Sperlich, H. Kraus, C. Deibel, H. Blok, J. Schmidt, V.Dyakonov, Reversible and irreversible interactions of poly(3-hexylthiophene) with oxygen studied by spin-sensitive methods,J. Phys. Chem. B. 115, 2011, 13513.[Crossref]
  • [157] A. Tournebize, P.O. Bussière, P. Wong-Wah-Chung, S. Thérias,A. Rivaton, J.L. Gardette et al., Impact of UV-visible light on themorphological and photochemical behavior of a low-bandgappoly(2,7-carbazole) derivative for use in high-performance solarcells, Adv. Energy Mater. 3, 2013, 478.[Crossref]
  • [158] M. Manceau, A. Rivaton, J.L. Gardette, S. Guillerez, N.Lemaitre, Light-induced degradation of the P3HT-based solarcells active layer, Solar Energy Mater. Solar Cells 95, 2011,1315.[Crossref]
  • [159] A. Tournebize, A. Rivaton, J.L. Gardette, C. Lombard, B.P. Donat,S. Beaupré et al., How photoinduced crosslinking underoperating conditions can reduce PCDTBT-based solar celleflciency and then stabilize it, Adv. Energy Mater. 4, 2014,1301530.
  • [160] P.A. Troshin, D.K. Susarova, N.P. Piven, E.D. Levchenkova,K.V. Lizgina, Y.L. Moskvin et al., 5th International Symphosiumfor Polymer Electronics, TPE12 (22-24 May2012, Rudolstadt, Germany), http://nanorgasol.univpau.fr/Annonces/TPE12_2nd{%}20-09.02.12.pdf
  • [161] E.D. Levchenkova, D.K. Susarova, N.P. Piven, S.D. Babenko,P.A. Troshin, A systematic study of the operational stabilityof conjugated polymers and organic solar cells madethereof, ICONO/LAT 2013 (June 18-22, 2013, Moscow, Russia),http://www.phys.msu.ru/rus/research/conferences/ICONOLAT-2013-program.pdf
  • [162] L.A. Frolova, N.P. Piven, D.K. Susarova, A.V. Akkuratov, S.D.Babenko, P.A. Troshin, Dark ESR spectroscopy for monitoringphotochemical and thermal degradation of conjugated polymersused as electron donor materials in organic bulk heterojunctionsolar cells, Chem. Comm., 2014, submitted
  • [163] P.A. Troshin, D.K. Susarova, Y.L. Moskvin, I.E. Kuznetsov, S.A.Ponomarenko, E.N.Myshkovskaya et al., A simple approach tocontrol the quality of conjugated polymers designed for photovoltaicapplications, Adv. Funct. Mater. 20, 2010, 4351.[Crossref]
  • [164] D.K. Susarova, N.P. Piven, A.V. Akkuratov, L.F. Frolova, M.S.Polinskaya, S.A. Ponomarenko, S.D. Babenko, P.A. Troshin,ESR spectroscopy as a powerful technique for controlling thequality of conjugated polymers designed for photovoltaic applications,Chem. Comm., 2014, submitted
  • [165] T. Xu, L. Yu, How to design low bandgap polymers for highlyeflcient organic solar cells, Materials Today 17, 2014, 11.[Crossref]
  • [166] L. Ye, S. Zhang, L. Huo, M. Zhang, J. Hou, Molecular designtoward highly eflcient photovoltaic polymers based on twodimensionalconjugated benzodithiophene, Acc. Chem. Res.2014, 47, 1595.
  • [167] D.K. Susarova, A.S. Peregudov, S.M. Peregudova, P.A. Troshin,New lowmolecular weight electroluminescentmaterials for efficientgreen organic light emitting diodes (OLEDs), MendeleevCommun. 24, 2014, 88.[Crossref]
  • [168] D.K. Susarova, D.V. Novikov, P.A. Troshin, Organic light emittingdiodes with solution processible organic bulk heterojunctionelectroluminescent layer, Mendeleev Commun. 24, 2014,85.[Crossref]
  • [169] I.O. Balashova, J.Y. Mayorova, P.A. Troshin, R.N. Lyubovskaya,I.K. Yakushchenko, M.G. Kaplunov, Color tuning in OLED devicesbased on new perylene derivatives, Mol. Cryst. Liq.Cryst. 467, 2007, 295.[Crossref]
  • [170] J.Y. Mayorova, P.A. Troshin, A.S. Peregudov, S.M. Peregudova,M.G. Kaplunov, R.N. Lyubovskaya, Highly soluble perylenedye: tetrabenzyl ester of 3,4,9,10-perylenetetracarboxylicacid, Mendeleev Commun. 17, 2007, 156.
  • [171] A. Fuchsbauer, O.A. Troshina, P.A. Troshin, R. Koeppe, R.N.Lyubovskaya, N.S. Sariciftci, Luminescent Tags on Fullerenes:Eu3+. Complexes with Pendant Fullerenes, Adv. Funct. Mater.18, 2008, 2808.
  • [172] V.A. Kostyanovsky, D.K. Susarova, G. Adam, R.N. Lyubovskaya,P.A. Troshin, A novel cyclopentadithiophene-fluorene copolymerfor organic solar cells and light emitting diodes,Mendeleev Commun. 23, 2013, 26.[Crossref]
  • [173] I.V. Klimovich, L.I. Leshanskaya, S.I. Troyanov, D.V. Anokhin,D.V. Novikov, P.A. Troshin et al., Design of indigo derivatives asenvironment-friendly organic semiconductors for sustainableorganic electronics, J. Mater. Chem. C 2, 2014, 7621.
  • [174] D.V. Anokhin, L.I. Leshanskaya, A.A. Piryazev, D.K. Susarova,N.N. Dremova, P.A. Troshin et al., Towards understanding thebehavior of indigo thin films in organic field-effect transistors:a template effect of the aliphatic hydrocarbon dielectric on thecrystal structure and electrical performance of the semiconductor,Chem. Commun. 50, 2014, 7639.[Crossref]
  • [175] M. Irimia-Vladu, E.D. Głowacki, P.A. Troshin, G. Schwabegger,L. Leonat, D. K. Susarova et al., Indigo - a natural pigmentfor high performance ambipolar organic field effect transistorsand circuits, Adv. Mater. 24, 2012, 375.
  • [176] M. Irimia-Vladu, P.A. Troshin, M. Reisinger, G. Schwabegger,M. Ullah, R. Schwödiauer et al., Sustainable organic field effecttransistors, Organic Electronics 11, 2010, 1974.[Crossref]
  • [177] M. Irimia-Vladu, P.A. Troshin, M. Reisinger, L. Shmygleva, Y.Kanbur, G. Schwabegger et al., Biocompatible and biodegradablematerials for organic field effect transistors, Adv. Funct.Mater. 2010, 20, 4069.[Crossref]
  • [178] A.V.Mumyatov, L.I. Leshanskaya, D.V. Anokhin, N.N. Dremova,P.A. Troshin, Organic field-effect transistors based on disubstitutedperylene diimides: effect of the alkyl chains on the deviceperformance, Mendeleev Commun. 24, 2014, 306.[Crossref]
  • [179] E.A. Kleymyuk, P.A. Troshin, Yu. N. Luponosov, E.A. Khakina,Yu. L. Moskvin, S.M. Peregudova et al., Three dimensionalquater- and quinquethiophenesilanes as promising electrondonormaterials for bulk heterojunction photovoltaic cells andphotodetectors, Energy Environ. Sci. 3, 2010, 1941.[Crossref]
  • [180] D.K. Susarova, P.A. Troshin, D. Höglinger, R. Koeppe, S.D.Babenko, R.N. Lyubovskaya et al., An effect of a donoracceptorcomplex formation on a performance of evaporatedsmall molecular organic photovol taic cells, Sol. EnergyMater.Sol. Cells 94, 2010, 803.[Crossref]
  • [181] P.A. Troshin, S.A. Ponomarenko, Y.N. Luponosov, E.A. Khakina,M. Egginger, T. Meyer-Friedrichsen et al., Eflcient solutionprocessibleorganic solar cells using quaterthiophene-basedmultipods as electron donormaterials, Sol. EnergyMater. Sol.Cells 94, 2010, 2064.[Crossref]
  • [182] L.A. Frolova, D.K. Susarova, N.A. Sanina, P.A. Troshin andSergey M. Aldoshin, Photoswitchable organic field effect transistorsand memory elements comprising interfacial photochromiclayer, Chem. Comm., 2014, submitted

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.