Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2015 | 3 | 1 |

Article title

Photoconductive and nonlinear optical properties
of composites based on metallophthalocyanines


Title variants

Languages of publication



The photoconductive, photorefractive and nonlinear
optical properties of composites from polyvinylcarbazole
or aromatic polyimide containing supramolecular
ensembles of (tetra-15-crown-5) - phthalocyaninato
gallium, indium, - phthalocyaninateacetato yttrium, -
phthalocyaninato ruthenium with axially coordinated
pyrazine molecules were investigated at 633, 1030 and
1064nmusing continuous and pulsed lasers. Supramolecular
ensembles (SE) were prepared through dissolution of
molecular metallophthalocyanines in tetrachloroethane
(TCE) and subsequent treatment via three cycles of heating
to 90∘C and slow cooling to room temperature. The zscan
method in femtosecond and nanosecond regimeswas
used for measuring nonlinear optical properties phthalocyaninato
indium and yttrium in TCE solutions and polymer
films. It was established that effect of heavy metallic
atom is basic factor which determines the quantum
yield, photorefractive amplification of laser object beam,
dielectric susceptibility of third order and nonlinear optical
properties of metallophthalocyanines.







Physical description


1 - 8 - 2014
27 - 3 - 2015
3 - 8 - 2015



  • [1] Salvador M., Prauzner J., Köber S., Meerholz K., Turek J.J., JeongK., Nolte D.D. Three-dimensional holographic imaging of livingtissue using a highly sensitive photorefractive polymer device.,Optics Express, 17, 11834 (2009)[Crossref][WoS]
  • [2] Tsujimura S., Kinasahi K., Sakai W., Tsutsumi N. High speedphotorefractive response capability in triphenilamine polymerbasedcomposites, Applied Physics Express., 5, 064101-1 (2012)[Crossref]
  • [3] Tay S., Thomas J., Eralp M., Li G., Kippelen B., Marder S.R.,Meredith G., Schulzgen A., Peyghambarian N. Photorefractivepolymer composite operating at the optical communicationwavelength of 1550 nm, Appl. Phys. Letters, 85, 4561 (2004)
  • [4] Calvete M.J.F., Near-infrared absorbing organic materials withnonlinear transmission properties, Int. Rev. Phys. Chem., 31,319 (2012)[WoS][Crossref]
  • [5] Vannikov A.V., Grishina A.D., Shapiro B.I., Pereshivko L.Ya.,Krivenko T., Savelyev V.V., Berendyaev V.I., Rychwalski R.W.,Photoelectric, nonlinear optical and photorefractive propertiesof polyimide doped with J–aggregates of cyanine dye, Chem.Phys., 287, 261 (2003)
  • [6] Vannikov A.V., Grishina A.D., The photorefractive effect in polymericsystems, Russ. Chem. Rev., 72, 471 (2003)[Crossref]
  • [7] Grishina A.D., Pereshivko L.Ya., Tameev A.R., Krivenko T.V.,Savelyev V.V., Vannikov A.V., Rychwalski R.W., Fast photorefractivepolymer composites based on nanocrystalline J-aggregatesof the cyanine dyes, Synthetic Metalls, 144, 113 (2004).
  • [8] Grishina A.D., Shapiro B.I., Pereshivko L.Ya., Krivenko T.V.,Savelyev V.V., Vannikov A.V., Rychwalski R.W., Infrared photorefractivecomposites based on polyimide and cyanine dyes Jaggregates,Polymer Sci., A, 47, 285 (2005)
  • [9] Vannikov A.V., Grishina A.D., Pereshivko L.Ya., Krivenko T.,Savelyev V.V., Rychwalski R.W., Infrared photorefractive compositesbased on polyimide and J-aggregates of cyanine dye,J. Nonlinear Opt. Phys. Mater., 14, 439 (2005).[Crossref]
  • [10] Vannikov A.V., Grishina A.D., Photorefractive polymer compositesbased on nanosized nonlinear optical chromophores, HighEnergy Chem., 41, 162 (2007).[WoS][Crossref]
  • [11] Kusyk M.G., A simplified three-level model for describingthe molecular third-order nonlinear optical susceptibility, Phys.Rev. Lett., 85, 1218 (2000)
  • [12] Markov R.V., Plekhanov A.I., Rautian S.G., Safonov V.P., OrlovaN.A., Shelkovnikov V.V., Dispersion of cubic susceptibility ofthin films of pseudoisocyanine J-aggregates as measured bylongitudinal scanning. Opt. Spectrosc., 85, 588 (1998)
  • [13] Tsivadze A.Yu., Supramolecular Metal Complex SystemsBased on Crown-Substituted Tetrapyrroles, Russ. Chem. Rev.,73, 6 (2004)
  • [14] Vannikov A.V., Grishina A.D., Gorbunova Yu.G., Enakieva Yu.Yu.,Krivenko T.V., Savel’ev V.V., Tsivadze A.Yu., Infrared photorefractivecomposites based on supramolecular ensemblesof ruthenium (II) tetra-15-crown-5-phthalocyaninate, DokladyPhysical Chemistry, 403, 137 (2005)
  • [15] Grishina A.D., Zolotarevsky V.I., Gorbunova Y.G, PereshivkoL.Ya., Enakieva Yu.Yu., Krivenko T.V., Savelyev V.V., VannikovA.V., Tsivadze A.Yu., The influence of a solvent on the aggregationof rutheniumtetra-15-crown-5-phthalocyaninate, Russ. J. ofPhysical Chemistry A, 83, 1907 (2004)
  • [16] Vannikov A.V., Grishina A.D., Gorbunova Yu.G., Krivenko T.V.,Laryushkin A.S., Lapkina L.A., Savelyev V.V., Tsivadze A.Yu.,Photoelectric, nonlinear optical and photorefractive propertiesof composites based on poly(n_vinylcarbazole) and galliumphthalocyaninate.Polymer Sci. Ser. A, 53, 1069 (2011)[WoS]
  • [17] Laryushkin A.S., Krivenko T.V., Gorbunova Yu.G., Grishina A.D.,Enakieva Yu.Yu., Savel’ev V.V., Vannikov A.V., Tsivadze A.Yu.,Photoelectric and photorefractive properties of compositesbased on poly(vinylcarbazole) and ruthenium(II) tetra-15-crown-5- phthalocyanine with axially coordinated pyrazine molecules,High Energy Chemistry, 46, 331 (2012)[WoS][Crossref]
  • [18] Grishina A.D., Gorbunova Y.G., Zolotarevsky V.I., PereshivkoL.Ya., Enakieva Yu.Yu., Krivenko T.V., Savelyev V.V., VannikovA.V., Tsivadze A.Yu., Solvent induced supramolecular assembliesof crown-substituted ruthenium phthalocyaninate: morphologyof assemblies and nonlinear optical properties, J. PorphyrinsPhthalocyanines, 13, 92 (2009)
  • [19] de la Torre G., Vazquez P., Agullo-Lopez F., Torres T., Role ofStructural Factors in the Nonlinear Optical Properties of Phthalocyaninesand Related Compounds, Chem. Rev., 104, 3723(2004)
  • [20] Lapkina L.A., Gorbunova Y.G., Gil D.O., Ivanov V.K., KonstantinovN.Yu., Tsivadze A.Yu., Synthesis, spectral properties, cationinduceddimerization and photochemical stability of tetra-(15-crown-5)-phthalocyaninato indium(III), J. Porphyrins Phthalocyanines,17, 564 (2013)
  • [21] Enakieva Yu.Yu., Gorbunova Yu.G.,Nefedov S.E., Tsivadze A.Yu.,Synthesis and structure of (R4Pc)Ru(TED)2 complex, where(R4Pc) dianion, TED-triethylenediamine, Mendeleev Comm., 14,193 (2004)
  • [22] Ogawa K., Kobuke Y., Construction and photophysical propertiesof self-assembled linear porphyrin arrays, J. Photochem.Photobiol. C: Photochem. Rev., 7, 1 (2006)[Crossref]
  • [23] Zhang L., Wang L., Recent research progress on optical limitingproperty of materials based on phthalocyanine, its derivatives,and carbon nanotubes. J. Mater. Sci., 43, 5692 (2008)[Crossref]
  • [24] Chauke V., Durmuş M., Nyokong T., Photochemistry, photophysicsand nonlinear optical parameters of phenoxy and tertbutylphenoxy substituted indium(III) phthalocyanines, Journalof Photochem. and Photobiol., A: Chem., 192, 179 (2007)[Crossref]
  • [25] Durmuş M., Nyokong T., Synthesis, photophysical and photochemicalproperties of aryloxy tetra-substituted galliumand indiumphthalocyanine derivatives, Tetrahedron, 63, 1385 (2007)
  • [26] Durmuş M., Nyokong T., Synthesis, photophysical and photochemicalproperties of tetra- and octa-substituted galliumand indium phthalocyanines, Polyhedron, 26, 3323 (2007)
  • [27] Vannikov A.V., Grishina A.D., Gorbunova Yu.G., Enakieva Yu.Yu.,Krivenko T.V., Savel’ev V.V., Tsivadze A.Yu. Infrared photorefractivecomposites based on supramolecular ensembles of ruthenium(II) tetra-15 crown-5-phthalocyaninate, Doklady PhysicalChemistry, 403 (part 2), 137 (2005)
  • [28] Enakieva Yu.Yu., Gorbunova Yu.G., Nefedov S.E., Tsivadze A.Yu.Synthesis and structure of the (R4Pc)Ru(TED)2 complex, whereR4Pc2− is the tetra-15-crown-5-phthalocyaninate dianion andTED is triethylenediamine, Mendeleev Comm., 14, 193 (2004)
  • [29] Grishina A.D., Gorbunova Yu.G., Pereshivko L.Ya., NekrasovA.A., Enakieva Yu.Yu., Krivenko T.V., Savel’ev V.V., Vannikov A.V.,Tsivadze A.Yu. Photorefractive polymer composites based onruthenium (II) tetra-15-crown-5-phthalocyanate axially coordinatingethylisonicotinate molecules photosensitive in telecommunicationrange, Protection of Metals and Physical Chemistryof Surfaces, 45, 535 (2009)[WoS]
  • [30] Kippelen B., Peyghambarian N., In Polymers for Photonic ApplicationsII, V. 161, P. 1 (2003).
  • [31] Ostroverkhova O., Moerner W.E., Organic Photorefractives:Mechanisms, Materials, and Applications, Chem. Rev., 104,3267 (2004)[Crossref]
  • [32] Yu P., Balasubramanian S., Ward T.Z., Chandrasekhar M., ChandrasekharH.R., Optimisation of photorefractive multiple quantumwells for biomedical imaging, Synth. Met., 155, 406 (2005)

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.