Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 3 | 1 |

Article title

Photonics of styrylquinoline dyads

Content

Title variants

Languages of publication

EN

Abstracts

EN
Three types of bichromophoric styrylquinoline
(SQ) dyads are discussed in the review: bisstyrylquinoline
dyads, styrylquinoline-merocyanine
dyads, and styrylquinoline-naphthol dyads, in comparison
with the corresponding model monochromophoric
compounds. A variety of photochemical and photophysical
processes is observed in the dyads: photoluminescence,
reversible and kinetic-driven one-way photoisomerization,
[2+2]photocycloaddition with formation of a
single rctt-isomer of the cyclobutane derivative, Forster
resonance energy transfer (FRET) where the SQ chromophore
can act as an energy donor or acceptor. Operation
of the dyads as photoswitches and molecular logic
gates is also considered.

Publisher

Year

Volume

3

Issue

1

Physical description

Dates

accepted
19 - 12 - 2014
received
2 - 9 - 2014
online
31 - 7 - 2015

Contributors

References

  • [1] F.C. Deschryver, P. Collart, R. Goedeweeck, A.M. Swinnen, J.Vandendriessche, M. Vanderauweraer, Intramolecular ExcimerFormation in BichromophoricMolecules Linked by a Short FlexibleChain, Acc. Chem. Res. 20, 1987, 159.[Crossref]
  • [2] N.Mataga, H. Chosrowjan, S. Taniguchi, Ultrafast charge transferin excited electronic states and investigations into fundamentalproblems of exciplex chemistry: Our early studies andrecent developments, J. Photochem. Photobiol. C: Photochem.Rev. 6, 2005, 37.[Crossref]
  • [3] S. Speiser, Photophysics and Mechanisms of IntramolecularElectronic Energy Transfer in Bichromophoric Molecular Systems:Solution and Supersonic Jet Studies, Chem. Rev. 96,1996, 1953.[Crossref]
  • [4] M.C. Jimenez, M.A. Miranda, R. Tormos, Proton, electron andenergy transfer processes in excited phenol–olefin dyads,Chem. Soc. Rev. 34, 2005, 783.[Crossref]
  • [5] M.C. Jimenez, U. Pischel, M.A. Miranda, Photoinduced processesin naproxen-based chiral dyads, J. Photochem. Photobiol.C: Photochem. Rev. 8, 2007, 128.[Crossref]
  • [6] B. Albinsson, J. Martensson, Long-range electron and excitationenergy transfer in donor–bridge–acceptor systems, J.Photochem. Photobiol. C: Photochem. Rev. 9, 2008, 138.[Crossref]
  • [7] B. Albinsson, J. Martensson, Excitation energy transfer indonor–bridge–acceptor systems, Phys. Chem. Chem. Phys. 12,2010, 7338.[Crossref]
  • [8] V. Russo, C. Curutchet, B. Mennucci, Towards aMolecular ScaleInterpretation of Excitation Energy Transfer in Solvated BichromophoricSystems. II. The Through-Bond Contribution, J. Phys.Chem. B 111, 2007, 853.[Crossref]
  • [9] C.P. Hsu, The Electronic Couplings in Electron Transfer and ExcitationEnergy Transfer, Acc. Chem. Res. 42, 2009, 509.[Crossref]
  • [10] B. Mennucci, C. Curutchet, The role of the environment inelectronic energy transfer: a molecular modeling perspective,Phys. Chem. Chem. Phys. 13, 2011, 11538.[Crossref]
  • [11] D. Gust, T.A. Moore, A.L. Moore, Mimicking Photosynthetic SolarEnergy Transduction, Acc. Chem. Res. 34, 2001, 40.[Crossref]
  • [12] Y. Nakamura, N. Aratani, A. Osuka, Cyclic porphyrin arrays asartificial photosynthetic antenna: synthesis and excitation energytransfer, Chem. Soc. Rev. 36, 2007, 831.[Crossref]
  • [13] D. Gust, T.A. Moore, A.L. Moore, Solar Fuels via Artificial Photosynthesis,Acc. Chem. Res. 42, 2009, 1890.[Crossref]
  • [14] D. Holten, D.F. Bocian, J.S. Lindsey, Probing Electronic Communicationin Covalently LinkedMultiporphyrin Arrays. A Guide tothe Rational Design of Molecular Photonic Devices, Acc. Chem.Res. 35, 2002, 57.[Crossref]
  • [15] V. Balzani, P. Ceroni, B. Ferrer, Molecular devices, Pure Appl.Chem. 76, 2004, 1887.[Crossref]
  • [16] P.Ceroni, A.Credi, M.Venturi, V.Balzani, Light-poweredmoleculardevices andmachines, Photochem. Photobiol. Sci. 9, 2010,1561.[Crossref]
  • [17] D. Gust, T.A. Moore, A.L. Moore, Molecular switches controlledby light, Chem. Commun. 11, 2006, 1169.[Crossref]
  • [18] T. Fukaminato, M. Tanaka, T. Doi, N. Tamaoki, T. Katayama, A.Mallick, Y. Ishibashi, H. Miyasaka, M. Irie, Fluorescence photoswitchingof a diarylethene–perylenebisimide dyad based onintramolecular electron transfer, Photochem. Photobiol. Sci. 9,2010, 181.[Crossref]
  • [19] O. Kuznetz, H. Salman, Y. Eichen, F. Remacle, R.D. Levine,S. Speiser, All Optical Full Adder Based on IntramolecularElectronic Energy Transfer in the Rhodamine-Azulene BichromophoricSystem, J. Phys. Chem. C 112, 2008, 15880.[Crossref]
  • [20] M. F. Budyka, Molecular Photonic Logic Gates, High EnergyChem. 44, 2010, 121.[Crossref]
  • [21] K.Szacilowski, Digital Information Processing in MolecularSystems, Chem. Rev. 108, 2008, 3481.[Crossref]
  • [22] J. Andreasson, U. Pischel,Smartmolecules at work - mimickingadvanced logic operations, Chem. Soc. Rev. 39, 2010, 174.[Crossref]
  • [23] D. Gust, J. Andreasson, U. Pischel, T.A. Moore, A.L. Moore, Dataand signal processing using photochromic molecules, Chem.Commun. 48, 2012, 1947.[Crossref]
  • [24] V.I. Minkin, Light-controlled molecular switches based onbistable spirocyclic organic and coordination compounds,Russ. Chem. Rev. 82, 2013, 1.
  • [25] G.Galiazzo, P. Bortolus, G. Gennari, Synthesis and photochemicalbehaviour of n-styrylquinolines and n-styrylisoquinolines,Gazz. Chim. Ital. 120, 1990, 581.
  • [26] M.F. Budyka, N.I. Potashova, T.N. Gavrishova, V.M. Li, Photoisomerizationof 2-Styrylquinoline in Neutral and ProtonatedForms, High Energy Chemistry 42, 2008, 446.[Crossref]
  • [27] M.F. Budyka, N.I. Potashova, T.N. Gavrishova, V.M. Li,Solvent-driven adiabatic trans-to-cis photoisomerization of4-styrylquinoline, J. Photochem. Photobiol. A: Chem., 203,2009, 100.
  • [28] M.F. Budyka, N.I. Potashova, T.N. Gavrishova, V.M. Li, Photoisomerizationand Photocyclization of 4-Styrylquinoline Derivatives,High Energy Chemistry 43, 2009, 370.[Crossref]
  • [29] M.F. Budyka, N.I. Potashova, T.N. Gavrishova, V.M. Li, The Effectof Substituents in the Styryl Moiety on the Photocyclizationof 4-Styrylquinoline Derivatives, High Energy Chemistry44, 2010, 404.[Crossref]
  • [30] M.F. Budyka, I.V. Oshkin, Quantum-Chemical Study of AzaDerivatives of Styrylnaphthalenes and Their PhotocyclizationProducts, High Energy Chemistry 43, 2009, 377.[Crossref]
  • [31] M.F. Budyka, I.V. Oshkin, Comparative semiempirical and DFTstudy of styrylnaphthalenes and styrylquinolines and theirphotocyclization products, Int. J. Quantum Chem. 111, 2011,3673.
  • [32] I.V. Oshkin, M.F. Budyka, Quantum-Chemical Study of thePhotoisomerization and Photocyclization Reactions ofStyrylquinolines: Potential Energy Surfaces, High EnergyChemistry 44, 2010, 472.[Crossref]
  • [33] M.F. Budyka, N.I. Potashova, T.N. Gavrishova, V.M. Lee, Experimentaland Quantum-Chemical Investigation of PhotochemicalProperties of a Covalently Bound Bis(styrylquinoline) Dyad,High Energy Chemistry 46, 2012, 309.[Crossref]
  • [34] U. Mazzucato, F. Momicchioli, Rotational Isomerism in trans-1,2-Diarylethylenes, Chem. Rev. 91, 1991, 1679.[Crossref]
  • [35] E. Fischer, The Calculation of Photostationary States in SystemsA <=> B When Only A Is Known, J. Phys. Chem. 71, 1967,3704.[Crossref]
  • [36] S.T. Bogen, J. Karolin, J.G. Molotkovsky, L. Johansson, 1,32-Dihydroxy-dotriacontane-bis(Rhodamine) 101 ester A lipidmembrane spanning bichromophoric molecule as revealed byintramolecular donor-donor energy migration (DDEM), J. Chem.Soc., Faraday Trans. 94, 1998, 2435.
  • [37] . J. Saltiel, A.S. Waller, D.F. Sears, Jr., The Temperature andMedium Dependencies of cis-Stilbene Fluorescence. The Energeticsfor Twisting in the Lowest Excited Singlet State, J. Am.Chem. Soc. 115, 1993, 2453.[Crossref]
  • [38] M.F. Budyka, T.N. Gavrishova, N.I. Potashova, A.V. Chernyak,Stereo- and regio-selective [2+2] photocycloaddition in a bisstyrylquinolinedyad, Mendeleev Commun. 2014. in press.
  • [39] M.F. Budyka, T.N. Gavrishova, N.I. Potashova, O.V.Chaschikhin, Spectral and photochemical properties ofbis-styrylquinoline dyad with o-xylylene bridge, High EnergyChemistry 48, 2014, in press.
  • [40] D. Lin-Vien, N.B. Colthup, W.G. Fateley, J.G. Grasselli, TheHandbook of Infrared and Raman Characteristic Frequencies ofOrganic Molecules, AP, San Diego, 1991.
  • [41] V. Balzani, L. Cola, L. Prodi, F. Scandola, Photochemistry ofSupramolecular Species, Pure Appl. Chem. 62, 1990, 1457.
  • [42] S.P. Gromov, O.A. Fedorova, E.N. Ushakov, A.V. Buevich, I.I.Baskin, Y.V. Pershina, B. Eliasson, U. Edlund, M.V. Alfimov,Photoswitchable molecular pincers: synthesis, self-assemblyinto sandwich complexes and ion-selective intramolecular
  • [2+2]-photocycloaddition of an unsaturated bis-15-crown-5ether, J. Chem. Soc., Perkin Trans. 2, 1999, 1323.
  • [43] A.I. Vedernikov, N.A. Lobova, E.N. Ushakov, M.V. Alfimov,S.P. Gromov, Diammonium cation-induced self-assembly intoa pseudocyclic complex leading to the stereospecific [2+2]-photocycloaddition of a crown-containing bis(styryl) dye,Mendeleev Commun. 15, 2005, 173.[Crossref]
  • [44] J.W. Chung, Y. You, H.S. Huh, B.K. An, S.J. Yoon, S.H. Kim, S.W.Lee, S.Y. Park, Shear- and UV-Induced Fluorescence Switchingin Stilbenic pi-Dimer Crystals Powered by Reversible [2+2] Cycloaddition,J. Am. Chem. Soc. 131, 2009, 8163.[Crossref]
  • [45] M.F. Budyka, V.M. Lee, T.N. Gavrishova, Proton-driven "oneway"photoisomerization due to energy transfer switching instyrylquinoline-merocyanine dyad, J. Photochem. Photobiol.A: Chem. 279, 2014, 59.[Crossref]
  • [46] M.F. Budyka, V.M. Lee, Self-quenching and self-sensitizationin photochemistry of novel styrylquinoline-merocyanine dyad,Mendeleev Commun. 24, 2014, 140.[Crossref]
  • [47] M.F. Budyka, V.M. Lee, T.N. Gavrishova, Spectral and photochemicalproperties of covalently-bound styrylquinolinemerocyaninedyad, High Energy Chemistry 48, 2014, in press.
  • [48] S.E. Braslavsky, E. Fron, H.B. Rodriguez, E.S. Roman, G.D. Scholes,G. Schweitzer, B. Valeur, J. Wirz, Pitfalls and limitationsin the practical use of Forster’s theory of resonance energytransfer, Photochem. Photobiol. Sci. 7, 2008, 1444.[Crossref]
  • [49] D.C. Todd, G.R. Fleming, Cis-stilbene isomerization: Temperaturedependence and the role of mechanical friction, J. Chem.Phys. 98, 1993, 269.
  • [50] T. Ikeda, B. Lee, H. Ushiki, K. Horie, Time-resolved observationof excitation hopping between 2 anthryl moieties attached toboth ends of polystyrene chains, J. Chem. Phys. 95, 1991, 6877.
  • [51] H.S. Cho, H. Rhee, J.K. Song, C.K. Min, M. Takase, N. Aratani,S. Cho, A. Osuka, T. Joo, D. Kim, Excitation Energy TransportProcesses of Porphyrin Monomer, Dimer, Cyclic Trimer, andHexamer Probed by Ultrafast Fluorescence Anisotropy Decay,J. Am. Chem. Soc. 125, 2003, 5849.[Crossref]
  • [52] T. Arai, K. Tokumaru, Photochemical one-way adiabatic isomerizationof aromatic olefins, Chem. Rev. 93, 1993, 23.[Crossref]
  • [53] M.F. Budyka, Diarylethene photoisomerization and photocyclizationmechanisms, Rus. Chem. Rev. 81, 2012, 477.
  • [54] M.F. Budyka, K.F. Sadykova, T.N. Gavrishova, Synthesis, spectraland photochemical properties of the styrylquinolinenaphtholdyad with a dioxytetramethylene bridge, MendeleevCommun. 21, 2011, 151.[Crossref]
  • [55] T.N. Gavrishova, V.M. Li, K.F. Sadykova, M.F. Budyka, Synthesisof photoactive bichromophoric dyads containing 2-styrylquinoline and 2-naphthol moieties, Russ. Chem. Bull.,Int. Ed. 60, 2011, 1495.
  • [56] M.F. Budyka, K.F. Sadykova, T.N. Gavrishova, V.Yu. Gak,Spectral–Luminescent Properties of the Dioxytetramethylene-Bridged Naphthol–Styrylquinoline Dyad, High Energy Chemistry46, 2012, 38.[Crossref]
  • [57] M.F. Budyka, K.F. Sadykova, T.N. Gavrishova, PhotochemicalProperties of the Naphthol–Styrylquinoline Dyad in Neutraland Ionic Forms, High Energy Chem. 46, 2012, 44.[Crossref]
  • [58] M.F. Budyka, K.F. Sadykova, T.N. Gavrishova, Energy transfer,fluorescence and photoisomerization of styrylquinolinenaphtholdyads with dioxypolymethylene bridges, J. Photochem.Photobiol. A: Chem. 241, 2012, 38.[Crossref]
  • [59] K.M. Solntsev, D. Huppert, N. Agmon, Photochemistry of"Super"-Photoacids. I. Solvent effects, J. Phys. Chem. A 103,1999, 6984.[Crossref]
  • [60] M.K. Nayak, P. Wan, Direct and water-mediated excited stateintramolecular proton transfer (ESIPT) from phenol OH to carbonatoms of extended ortho-substituted biaryl systems, Photochem.Photobiol. Sci. 7, 2008, 1544.[Crossref]
  • [61] A. Mallick, P. Purkayastha, N. Chattopadhyay, Photoprocessesof excited molecules in confined liquid environments: Anoverview, J. Photochem. Photobiol. C: Photochem. Rev. 8,2007, 109.[Crossref]
  • [62] B.J. Siwick, M.J. Cox, H.J. Bakker, Long-range proton transferin aqueous acid-base reactions Long-range proton transfer inaqueous acid-base reactions, J. Phys. Chem. B 112, 2008, 378.[Crossref]
  • [63] B. Valeur, J. Mugnier, J. Pouget, J. Bourson, F. Santi, Calculationof the Distribution of Donor-Acceptor Distances in FlexibleBichromophorlc Molecules. Application to IntramolecularTransfer of Excitation Energy, J. Phys. Chem. 93, 1989, 6073.[Crossref]
  • [64] U. Werner, H. Staerk, Estimation of the Probability Distributionof End-Group Distances of Chain-Linked Electron Donor-Acceptor Molecules and Radical Ion Pairs: A Monter-Carlo Approach,J. Phys. Chem. 97, 1993, 9274.[Crossref]
  • [65] L. Vrbka, P. Klan, Z. Kriz, J. Koca, P.J. Wagner, Computer Modelingand Simulations on Flexible Bifunctional Systems: IntramolecularEnergy Transfer Implications, J. Phys. Chem. A107, 2003, 3404.[Crossref]
  • [66] MOPAC2009, J.J.P. Stewart, Stewart Computational Chemistry,Version 9.310W, web: HTTP://OpenMOPAC.net
  • [67] F. Hirayama, Intramolecular Excimer Formation. I. Diphenyl andTriphenyl Alkanes, J. Chem. Phys. 42, 1965, 3163.
  • [68] J.J. Cai, E.C. Lim, Photoassociation and Photoinduced Charge-Transfer in Bridged Diaryl Compounds .6. Intramolecular Triplet Excimers of Dicarbazolylalkanes and Their Comparisonto an Intermolecular Triplet Excimer of Carbazole, J. Phys.Chem. 98, 1994, 2515.[Crossref]
  • [69] M.F. Budyka, T.N. Gavrishova, O.D. Laukhina, Spectraland photochemical properties of bifunctional compoundsand their complexes. 2. Photocyclization of a,w-bis(diphenylamino)alkanes to a,w-di(carbazolyl)alkanes,Russ. Chem. Bull., Int. Ed. 48, 1999, 1491.[Crossref]
  • [70] K.A. Zachariasse, A.L. Macanita, W. Kuhnle, Chain Length Dependenceof Intramolecular Excimer Formation with 1,n-Bis(1-pyrenylcarboxy)alkanes for n=1-16, 22, and 32, J. Phys. Chem.B 103, 1999, 9356.
  • [71] V.F. Razumov, M.V. Alfimov, Photochemical Reactions Of DiarylethylenesIn Confine System, J. Sci. Appl. Photogr. 48,2003, 28.
  • [72] W.H. Mulder, Effect of medium relaxation on the acidity constantsof electronically excited states obtained by the Forstercycle method, J. Photochem. Photobiol. A: Chem. 161, 2003,21.[Crossref]
  • [73] T. Steiner, The Hydrogen Bond in the Solid State, Angew.Chem. Int. Ed. 41, 2002, 48.[Crossref]
  • [74] C.A.Hunter, K.R.Lawson, J.Perkins, C.J. Urch, Aromatic interactions,J. Chem. Soc., Perkin Trans. 2. 2001, 651.
  • [75] A.P. de Silva, S. Uchiyama, Molecular logic and computing, NatureNanotechnology 2, 2007, 399.[Crossref]
  • [76] M.F.Budyka, N. I. Potashova, T. N. Gavrishova, V. M. Li, Molecularlogic gates based on derivatives of 2-styrylquinoline, Russ.Chem. Bull., Int. Ed. 57, 2008, 2586.[Crossref]
  • [77] M. F. Budyka, N. I.Potashova, T. N. Gavrishova, and V. M. Li, ReconfigurableMolecular Logic Gate Operating in Polymer Film,J. Mat. Chem. 19, 2009, 7721[Crossref]
  • [78] M.F. Budyka, N.I. Potashova, T.N. Gavrishova, and V.M. Li, Designof Fully Photonic Molecular Logic Gates Based on theSupramolecular Bis-styrylquinoline Dyad, Nanotechnologiesin Russia 7, 2012, 280

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_oph-2015-0001
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.