Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 60 | 4 | 899-905

Article title

Electron beam irradiation of r-SANEX and i-SANEX solvent extraction systems: analysis of gaseous products

Content

Title variants

Languages of publication

EN

Abstracts

EN
1-Octanol/kerosene mixtures and water contacted with organic solvents were used as model solutions for r-SANEX and i-SANEX extractions systems. Investigations aimed on a quantitative evaluation of gaseous products generated in these systems under exposure to an electron beam irradiation. Influence of O2, HNO3 and the presence of model ligands and complexes on the radiation chemical yields was studied. Relatively high G(H2) values (up to 420 nmol·J-1) for the organic phase compromise the safety issues of the extraction process and should be considered on the stage of extraction apparatus design. Based on the obtained results gaseous hydrocarbons seem to have negligible impact on safety issue. The upper limit of G(H2) values in water contacted with organic phase was established to be 85 nmol·J-1. This value is relatively low, however, the literature data indicate that G(H2) values measured in aqueous solutions are over twice higher for α-particles irradiation than for electron beam or γ-irradiation. Thus, further investigations of these systems are necessary.

Publisher

Journal

Year

Volume

60

Issue

4

Pages

899-905

Physical description

Dates

published
1 - 12 - 2015
accepted
16 - 9 - 2015
received
29 - 6 - 2015
online
30 - 12 - 2015

Contributors

  • Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195 Warsaw, Poland, Tel.: +48 22 504 1204
author
  • Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195 Warsaw, Poland, Tel.: +48 22 504 1204

References

  • 1. Rydberg, J., Cox, M., Musikas, C., Choppin, G. R. (Eds.). (2004). Solvent extraction principles and practice. 2nd ed., revised and expanded. New York: Marcel Dekker.
  • 2. Hill, C. (2009). Overview of recent advances in An(III)/ Ln(III) separation by solvent extraction. In B. A. Moyer (Ed.), Ion exchange and solvent extraction. (A Series of Advances, Vol. 19, pp. 119-194). CRC Press.
  • 3. Panak, P. J., & Geist, A. (2013). Complexation and extraction of trivalent actinides and lanthanides by triazinylpyridine N-donor ligands. Chem. Rev., 113, 1199-1236. DOI: 10.1021/cr3003399.[Crossref][WoS]
  • 4. Geist, A., Mullich, U., Magnusson, D., Kaden, P., Modolo, G., Wilden, A., & Zevaco, T. (2012). Actinide(III)/lanthanide(III) separation via selective aqueous complexation of actinides(III) using a hydrophilic 2,6-bis(1,2,4-triazin-3-yl)-pyridine in nitric acid. Solvent Extr. Ion Exch., 30, 433-444. DOI: 10.1080/07366299.2012.671111.[Crossref]
  • 5. Wilden, A., Schreinemachers, C., Sypula, M., & Modolo, G. (2011). Direct selective extraction of actinides (III) from PUREX raffi nate using a mixture of CyMe4BTBP and TODGA as 1-cycle SANEX solvent. Solvent Extr. Ion Exch., 29, 190-212. DOI: 10.1080/07366299.2011.539122.
  • 6. Geist, A., Hill, C., Modolo, G., Foreman, M. R. S. J., Weigl, M., Gompper, K., & Hudson, M. J. (2006). 6,6ʹ-bis (5,5,8,8-tetramethyl-5,6,7,8-tetrahydro- benzo[1,2,4]triazin-3-yl)[2,2ʹ]bipyridine, an effective extracting agent for the separation of americium(III) and curium(III) from the lanthanides. Solvent Extr. Ion Exch., 24, 463-483. DOI: 10.1080/07366290600761936.[Crossref]
  • 7. Spinks, J. W. T., & Woods, R. J. (1976). An introduction to radiation chemistry. New York: Wiley.
  • 8. Allen, D., Baston, G., Bradley, A. E., Gorman, T., Haile, A., Hamblett, I., Hatter, J. E., Healey, M. J. F., Hodgson, B., Lewin, R., Lovell, K. V., Newton, B., Pitner, W. R., Rooney, D. W., Sanders, D., Seddon, K. R., Sims, H. E., & Thied, R. C. (2002). An investigation of the radiochemical stability of ionic liquids. Green Chemistry, 4, 152-158. DOI: 10.1039/B111042j.[Crossref]
  • 9. Cheng, Y. -S., Zhou, Y., Chow, J., Watson, J., & Frazier, C. (2001). Chemical composition of aerosols from kerosene heaters burning jet fuels. Aerosol Sci. Technol., 35, 949-957. DOI: 10.1080/027868201753306714.[Crossref]
  • 10. Lam, N. L., Smith, K. R., Gauthier, A., & Bates, M. N. (2012). Kerosene: A review of household uses and their hazards in low- and middle-income countries. J. Toxicol. Environ. Health Part B, 15, 396-432. DOI: 10.1080/10937404.2012.710134.[Crossref][WoS]
  • 11. Spasov, G. M., Gerasimov, M. M., Siryuk, A. G., & Zimina, K. I. (1967). Chemical composition of kerosene- gas-oil fractions of the Bulgarian crudes. Chem. Technol. Fuels Oils, 3, 556-560. DOI: 10.1007/ bf00729941.[Crossref]
  • 12. Dewhurst, H. A. (1957). Radiation chemistry of organic compounds. 1. N-alkane liquids. J. Phys. Chem., 61, 1466-1471. DOI: 10.1021/J150557a004.[Crossref]
  • 13. Swallow, A. J. (1960). Radiation chemistry of organic compounds. Oxford: Pergamon Press.
  • 14. Kharasch, M. S., Chang, P. C., & Wagner, C. D. (1958). Radiolysis of 1-hexene. J. Org. Chem., 23, 779-780. DOI: 10.1021/Jo01099a628.[Crossref]
  • 15. LaVerne, J. A., & Schuler, R. H. (1984). Track effects in radiation chemistry: Core processes in heavy- -particle tracks as manifest by the H2 yield in benzene radiolysis. J. Phys. Chem., 88(6), 1200-1205. DOI: 10.1021/J150650a037.[Crossref]
  • 16. Jones, K. H., Van Dusen Jr, W., & Theard, L. M. (1964). Intermolecular and intramolecular energy transfer in gamma-irradiated alkylbenzenes and related mixtures. Radiat. Res., 232, 128-134.
  • 17. Schoepfle, C. S., & Fellows, C. H. (1931). Gaseous products from action of cathode rays on hydrocarbons. Ind. Eng. Chem., 23, 1396-1398. DOI: 10.1021/ ie50264a020.[Crossref]
  • 18. Manion, J. P., & Burton, M. (1952). Radiolysis of hydrocarbon mixtures. J. Phys. Chem., 56, 560-569. DOI: 10.1021/J150497a005.[Crossref]
  • 19. Mcdonell, W. R., & Newton, A. S. (1954). The radiation chemistry of the aliphatic alcohols. J. Am. Chem. Soc., 76, 4651-4658. DOI: 10.1021/Ja01647a051.[Crossref]
  • 20. Dewhurst, H. A. (1958). Radiation chemistry of organic compounds. 3. Branched chain alkanes. J. Am. Chem. Soc., 80, 5607-5610. DOI: 10.1021/Ja01554a006.[Crossref]
  • 21. Geist, A. (2010). Extraction of nitric acid into alcohol: Kerosene mixtures. Solvent Extr. Ion Exch., 28, 596-607. DOI: 10.1080/07366299.2010.499286.[Crossref]
  • 22. Nagaishi, R. (2001). A model for radiolysis of nitric acid and its application to the radiation chemistry of uranium ion in nitric acid medium. Radiat. Phys. Chem., 60, 369-375. DOI: 10.1016/S0969-806x(00)00410-2.[Crossref]
  • 23. Katsumura, Y. (1998). NO2 and NO3 radicals in the radiolysis of nitric acid solutions. In Z. B. Alfassi (Ed.), The chemistry of free radicals: N-centered radicals (pp. 393-412). Chichester: John Wiley & Sons.
  • 24. Garrett, B. C., Dixon, D. A., Camaioni, D. M., Chipman, D. M., Johnson, M. A., Jonah, C. D., Kimmel, G. A., Miller, J. H., Rescigno, T. N., Rossky, P. J., Xantheas, S. S., Colson, S. D., Laufer, A. H., Ray, D., Barbara, P. F., Bartels, D. M., Becker, K. H., Bowen Jr, K. H., Bradforth, S. E., Carmichael, I., Coe, J. V., Corrales, L. R., Cowin, J. P., Dupuis, M., Eisenthal, K. B., Franz, J. A., Gutowski, M. S., Jordan, K. D., Kay, B. D., Laverne, J. A., Lymar, S. V., Madey, T. E., McCurdy, C. W., Meisel, D., Mukamel, S., Nilsson, A. R., Orlando, T. M., Petrik, N. G., Pimblott, S. M., Rustad, J. R., Schenter, G. K., Singer, S. J., Tokmakoff, A., Wang, L. S., Wettig, C., & Zwier, T. S. (2005). Role of water in electron-initiated processes and radical chemistry: issues and scientifi c advances. Chem. Rev., 105(1), 355-390. DOI: 10.1021/cr030453x.[Crossref]
  • 25. Burns, W. G., & Moore, P. B. (1976). Water radiolysis and its effect upon in-reactor zircaloy corrosion. Radiat. Eff. Defects Solids, 30(4), 233-242. DOI: 10.1080/00337577608240827.[Crossref]
  • 26. Elliot, A. J., Chenier, M. P., & Ouellette, D. C. (1990). G-values for gamma-irradiated water as a function of temperature. Can. J. Chem., 68(5), 712-719. DOI: 10.1139/V90-111.[Crossref]
  • 27. Kanjana, K., Haygarth, K. S., Wu, W., & Bartels, D. M. (2013). Laboratory studies in search of the critical hydrogen concentration. Radiat. Phys. Chem., 82, 25-34. DOI: 10.1016/j.radphyschem.2012.09.011.[WoS][Crossref]
  • 28. von Sonntag, C. (2006). Free-radical-induced DNA damage and its repair. Berlin-Heidelberg: Springer.
  • 29. Basson, R. A., & van der Linde, H. J. (1967). Polarity effects in radiolysis of n-alcohols. J. Chem. Soc. A, 1, 28-32. DOI: 10.1039/J19670000028.[Crossref]
  • 30. Katsumura, Y., Sunaryo, G., Hiroishi, D., & Ishigure, K. (1998). Fast neutron radiolysis of water at elevated temperatures relevant to water chemistry. Prog. Nucl. Energy, 32(1/2), 113-121. DOI: 10.1016/S0149-1970(97)00011-5.[Crossref]
  • 31. Cashdollar, K. L., Zlochower, I. A., Green, G. M., Thomas, R. A., & Hertzberg, M. (2000). Flammability of methane, propane, and hydrogen gases. J. Loss Prev. Process Ind., 13(3/5), 327-340. DOI: 10.1016/ S0950-4230(99)00037-6.[Crossref]
  • 32. Holmstedt, G. S. (1971). The upper limit of fl ammability of hydrogen in air, oxygen, and oxygen-inert mixtures at elevated pressures. Combust. Flame, 17(3), 295-301. DOI: 10.1016/S0010-2180(71)80051-2.[Crossref]
  • 33. Wierzba, I., & Kilchyk, V. (2001). Flammability limits of hydrogen-carbon monoxide mixtures at moderately elevated temperatures. Int. J. Hydrogen Energy, 26(6), 639-643. DOI: 10.1016/S0360-3199(00)00114-2.[WoS][Crossref]
  • 34. Zabetakis, M. G. (1965). Flammability characteristics of combustible gases and vapors. Washington D.C.: U.S. Department of Interior, Bureau of Mines.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_nuka-2015-0157
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.