PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2015 | 60 | 4 | 837-845
Article title

A calculation model for liquid-liquid extraction of protactinium by 2,6-dimethyl-4-heptanol

Content
Title variants
Languages of publication
EN
Abstracts
EN
Reprocessing of spent nuclear fuel usually employs the solvent extraction technique to recover fissile material, isolate other valuable radionuclides, recover precious metals, and remove contaminants. Efficient recovery of these species from highly radioactive solutions requires a detailed understanding of reaction conditions and metal speciation that leads to their isolation in pure forms. Due to the complex nature of these systems, identification of ideal reaction conditions for the efficient extraction of specific metals can be challenging. Thus, the development of experimental approaches that have the potential to reduce the number of experiments required to identify ideal conditions are desirable. In this study, a full-factorial experimental design was used to identify the main effects and variable interactions of three chemical parameters on the extraction of protactinium (Pa). Specifically we investigated the main effects of the anion concentration (NO3-, Cl-) extractant concentration, and solution acidity on the overall extraction of protactinium by 2,6-dimethyl-4-heptanol (diisobutylcarbinol; DIBC) from both HCl and HNO3 solutions. Our results indicate that in HCl, the extraction of protactinium was dominated by the solution acidity, while in nitric acid the extraction was strongly effected by the [DIBC]. Based on our results, a mathematical model was derived, that describes the relationship between concentrations of anions, extractant, and solution acidity and the expected values of Pa distribution coefficients in both HCl and HNO3. This study demonstrates the potential to predict the distribution coefficient values, based upon a mathematical model generated by a full-factorial experimental design.
Publisher
Journal
Year
Volume
60
Issue
4
Pages
837-845
Physical description
Dates
published
1 - 12 - 2015
received
1 - 7 - 2015
accepted
26 - 9 - 2015
online
30 - 12 - 2015
References
  • 1. King, J.C. (1987). The impact of separation science and technology on some key technological challenges facing society. In R. Price (Ed.), Separation and purification: Critical needs and opportunities. Washington, D. C., USA: National Academy Press.
  • 2. Nuclear Energy Agency with Working Party on Nuclear Criticality Safety and Expert Group on Assay Data of Spent Nuclar Fuel. (2011). Spent nuclear fuel assay data for isotopic validation. Organisation for Economic Co-operation and Development. NEA.
  • 3. International Atomic Energy Agency. (2007). Use of reprocessed uranium. In Technical Committee Meeting. Vienna, Austria: IAEA. (IAEA-TECDOC-CD-1630).
  • 4. Simpson, M. F., & Law, J. D. (2010). Nuclear fuel reprocessing. Idaho Falls, Idaho: Idaho National Laboratory. (INL/EXT-10-17753).
  • 5. Kirby, H. W. (1959). The radiochemistry of protactinium. National Academy of Sciences National Research Council. (Nuclear Series, NAS-NS 3016).
  • 6. Rydberg, J., Musikas, C., Choppin, G. R., & Cox, M. (2004). Solvent extraction principles, and practices. 2nd ed. New York: Marcel Dekker.
  • 7. Multi-Agency Radiological Laboratory Analytical Protocols Manual. (2004). 14.4 Solvent Extraction. (NUREG-1576), (EPA 402-B-04-001A), (NTIS PB2004-105421).
  • 8. U. S. Department of Energy. (2011). Nuclear separations technologies workshop report: Getting from where we are to where we want to be in nuclear separations technologies. Bethesda, Maryland.
  • 9. Kumari, N., Pathak, P. N., Prabhu, D. R., & Manchanda, V. K. (2012). Solvent extraction studies of protactinium for its recovery from short-cooled spent fuel and high-level waste solutions in thorium fuel cycle using diisobutyl carbinol (DIBC) as extractant. Desalin. Water Treat., 38(1/3), 46-51. DOI: 10.5004/ DWT.2012.2292.[Crossref][WoS]
  • 10. Rampolla, D. S. (1982). U. S. Patent No. 4,344,912A. Method of increasing the deterrent to proliferation of nuclear fuels. U. S. Department of Energy.
  • 11. National Nuclear Data Center. (2015). Infomation extracted from the NuDat 2 database. http://www.nndc.bnl.gov/nudat2.
  • 12. Eppich, G. R., William, R. W., Gaffney, A. M., & Schorzman, K. C. (2013). U-235-Pa-231 age dating of uranium materials for nuclear forensic investigations. J. Anal. At. Spectrom., 28(5), 666-674. DOI: 10.1039/C3ja50041a.[Crossref]
  • 13. Trianti, N., Su’ud, Z., & Riyana, E. S. (2012). Design study of thorium-232 and protactinium-231 based fuel for long life BWR. In 3rd International Conference on Advances in Nuclear Science and Engineering. (1448, pp. 96-100).
  • 14. Imamura, T., Saito, M., Yoshida, T., & Artisyuk, V. (2004). Production of Pa-U fuel with proliferation resistance by 14 MeV neutron for long-life core. J. Nucl. Sci. Technol., 40(6), 655-664.
  • 15. Tsvetkov, P. V., Kryuchkov, E. F., Shmelev, A. N., Apse, V. A., Kulikov, G. G., Masterov, S. V., Kulikov, E. G., & Glebov, V. B. (2011). Isotopic uranium and plutonium denaturing as an effective method for nuclear fuel proliferation protection in open and closed fuel cycles. In P. Tsvetkov (Ed.), Nuclear power - deployment, operation and sustainability (Chapter 14). Winchester, UK: InTech.
  • 16. Myasoedov, B. F., Kirby, H. W., & Tananaev, I. G. (2010). Protactinium. In L. R. Morss, N. M. Edelstein, & J. Fuger (Eds.), The chemistry of the actinide and transactinide elements. Vol. 1. Dordrecht, Netherlands: Springer.
  • 17. Berry, J. A., Hobley, J., Lane, S. A., Littleboy, A. K., Nash, M. J., Oliver, P., Smith-Briggs, J. L., & Williams, S. J. (1989). Solubility and sorption of protactinium in near-field and far-field environments of a radioactive waste repository. Analyst, 114, 339-347.
  • 18. Forbes, T. Z., Burns, P. C., Soderholm, L., & Skanthakumar, S. (2007). Hydrothermal synthesis and structure of neptunium(V) oxide. In D. Dunn, C. Poinssot, & B. Begg (Eds.), Scientific basis for nuclear waste management XXX, (Vol. 985, pp. 401-406). Cambridge, UK: Cambridge University Press.
  • 19. De Sio, S. M., & Wilson, R. E. (2014). Structural and spectroscopic studies of fluoroprotactinates. Inorg. Chem., 53(3), 1750-1755.
  • 20. Eskandari Nasab, M. (2014). Solvent extraction separation of uranium(VI) and thorium(IV) with neutral organophosphorus and amine ligands. Fuel, 116, 595-600.[WoS]
  • 21. Knight, A. W., Nelson, A. W., Eitrheim, E. S., Forbes, T. Z., & Schultz, M. K. (2015). A chromatographic separation of neptunium and protactinium using 1-octanol impregnated onto a solid phase support. J. Radioanal. Nucl. Chem. DOI: 10.1007/s10967-015-4124-3.
  • 22. Hill, C. (2010). Overview of recent advances in An(III)/Ln(III) separation by solvent extraction. In B. Moyer (Ed.), Ion exchange and solvent extraction. (A Series of Advances, Vol. 19, pp. 119-193). Boca Raton: CRC Press.
  • 23. Box, G. E. P., Hunter, W. G., & Hunter, J. S. (1978). Statistics for experimenters: An introduction to design analysis and model building. New York: John Wiley and Sons.
  • 24. Schultz, M. K., Inn, K. G. W., Lin, Z. C., Burnett, W. C., Smith, G., Biegalski, S. R., & Filliben, J. (1998). Identification of radionuclide partitioning in soils and sediments: Determination of optimum conditions for the exchangeable fraction of the NIST standard sequential extraction protocol. Appl. Radiat. Isot., 49(9/11), 1289-1293.
  • 25. Currie, L. A. (1968). Limits for qualitative detection and quantitative determination. Anal. Chem., 40(3), 586-593.[Crossref]
  • 26. Burnett, W. C., & Yeh, C. C. (1995). Separation of protactinium from geochemical materials via extraction chromatography. Radioact. Radiochem., 6(4), 22-32.
  • 27. Regelous, M., Turner, S. P., Elliot, T. R., Rostami, K., & Hawkesworth, C. J. (2004) Measurement of femtogram quantities of protactinium in silicate rock samples by multicollector inductively coupled plasma mass spectrometry. Anal. Chem., 76(13), 3584-3589.[Crossref]
  • 28. Knight, A. W., Eitrheim, E. S., Nelson, A. W., Nelson, S., & Schultz, M. K. (2014). A simple-rapid method to separate uranium, thorium, and protactinium for U-series age-dating of materials. J. Environ. Radioact., 134, 66-74.[WoS]
  • 29. Silva, A., Delerue-Matos, C., & Fiuza, A. (2005). Use of solvent extraction to remediate soils contaminated with hydrocarbons. J. Hazard. Mater., 124(1/3), 224-229.[Crossref]
  • 30. Scherff, H. -L., & Herrmann, G. (1966). Ionic species of pentavalent protactinium in hydrochloric acid solutions. Radiochim. Acta, 6(2), 53-61.
  • 31. Casey, A. T., & Maddock, A. G. (1959). The chemistry of protactinium - some spectrophotometric observations. J. Inorg. Nucl. Chem., 10(1/2), 58-68.[Crossref]
  • 32. Guillaumont, R., Muxart, R., Bouissieres, G., & Haissinsky, M. (1960). Spectres Dabsorption Du Protactinium En Solution Aqueuse. J. Chim. Phys. Phys.-Chim. Biol., 57(11/12), 1019-1028.
  • 33. Hardy, C. J., Scargill, D., & Fletcher, J. M. (1958). Studies on protactinium(V) in nitric acid solutions. J. Inorg. Nucl. Chem., 7(3), 257-275.[Crossref]
  • 34. Spitsyn, V. I., & Dyachkov, R. A. (1964). Concentrating 231Pa from uranium production waste. J. Nucl. Energy AB, 18(12PA), 731.
  • 35. Hochberg, Y., & Tamhane, A. C. (1987). Multiple comparison procedures. New York: Wiley.
  • 36. Spitsyn, V. I., Dyachkov, R. A., & Khlebnikov, V. P. (1964). State of protactinium in nitrate solutions. Dokl. Akad. Nauk SSSR, 157(1), 135-138.
  • 37. Theil, H. (1971). Principles of econometrics. New York: John Wiley & Sons.
  • 38. Theil, H. (1961). Economic forecasts and policy. 2nd ed. Amsterdam: North-Holland Publ. Co.
  • 39. Anderson, M. J., & Whitcomb, P. J. (2007). DOE Simplified: Practical tools for effective experimentation. New York: Productivity.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_nuka-2015-0154
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.