Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2015 | 60 | 4 | 871-878

Article title

Reprocessability of molybdenum and magnesia based inert matrix fuels


Title variants

Languages of publication



This work focuses on the reprocessability of metallic 92Mo and ceramic MgO, which is under investigation for (Pu,MA)-oxide (MA = minor actinide) fuel within a metallic 92Mo matrix (CERMET) and a ceramic MgO matrix (CERCER). Magnesium oxide and molybdenum reference samples have been fabricated by powder metallurgy. The dissolution of the matrices was studied as a function of HNO3 concentration (1-7 mol/L) and temperature (25-90°C). The rate of dissolution of magnesium oxide and metallic molybdenum increased with temperature. While the MgO rate was independent of the acid concentration (1-7 mol/L), the rate of dissolution of Mo increased with acid concentration. However, the dissolution of Mo at high temperatures and nitric acid concentrations was accompanied by precipitation of MoO3. The extraction of uranium, americium, and europium in the presence of macro amounts of Mo and Mg was studied by three different extraction agents: tri-n-butylphosphate (TBP), N,Nʹ-dimethyl-N,Nʹ-dioctylhexylethoxymalonamide (DMDOHEMA), and N,N,N’,N’- -tetraoctyldiglycolamide (TODGA). With TBP no extraction of Mo and Mg occurred. Both matrix materials are partly extracted by DMDOHEMA. Magnesium is not extracted by TODGA (D < 0.1), but a weak extraction of Mo is observed at low Mo concentration.










Physical description


1 - 12 - 2015
15 - 9 - 2015
19 - 6 - 2015
30 - 12 - 2015


  • Institut für Energie- und Klimaforschung, Nukleare Entsorgung und Reaktorsicherheit (IEK-6), Forschungszentrum Jülich GmbH (FZJ), 52425 Jülich, Germany, Tel.: +49 2461 61 4896, Fax: +49 2461 61 2450
  • Institut für Energie- und Klimaforschung, Nukleare Entsorgung und Reaktorsicherheit (IEK-6), Forschungszentrum Jülich GmbH (FZJ), 52425 Jülich, Germany, Tel.: +49 2461 61 4896, Fax: +49 2461 61 2450
  • Institut für Energie- und Klimaforschung, Nukleare Entsorgung und Reaktorsicherheit (IEK-6), Forschungszentrum Jülich GmbH (FZJ), 52425 Jülich, Germany, Tel.: +49 2461 61 4896, Fax: +49 2461 61 2450
  • Institut für Energie- und Klimaforschung, Nukleare Entsorgung und Reaktorsicherheit (IEK-6), Forschungszentrum Jülich GmbH (FZJ), 52425 Jülich, Germany, Tel.: +49 2461 61 4896, Fax: +49 2461 61 2450
  • Institut für Energie- und Klimaforschung, Nukleare Entsorgung und Reaktorsicherheit (IEK-6), Forschungszentrum Jülich GmbH (FZJ), 52425 Jülich, Germany, Tel.: +49 2461 61 4896, Fax: +49 2461 61 2450
  • Institut für Energie- und Klimaforschung, Nukleare Entsorgung und Reaktorsicherheit (IEK-6), Forschungszentrum Jülich GmbH (FZJ), 52425 Jülich, Germany, Tel.: +49 2461 61 4896, Fax: +49 2461 61 2450


  • 1. Pillon, S. (2012). Actinide-bearing fuels and transmutation targets. In R. J. M. Konings (Ed.), Comprehensive nuclear materials (Vol. 3, pp. 109-141). Oxford: Elsevier.
  • 2. Modolo, G., Wilden, A., Geist, A., Magnusson, D., & Malmbeck, R. (2012). A review of the demonstration of innovative solvent extraction processes for the recovery of trivalent minor actinides from PUREX raffinate. Radiochim. Acta, 100, 715-725. DOI: 10.1524/ract.2012.1962.[WoS][Crossref]
  • 3. Montel, J. -M. (2011). Minerals and design of new waste forms for conditioning nuclear waste. C. R. Geosci., 343, 230-236. DOI: 10.1016/j. crte.2010.11.006.[Crossref][WoS]
  • 4. Lamontagne, J., Béjaoui, S., Hanifi , K., Valot, C., & Loubet, L. (2011). Swelling under irradiation of MgO pellets containing americium oxide: The ECRIX-H irradiation experiment. J. Nucl. Mater., 413, 137-144. DOI: 10.1016/j.jnucmat.2011.04.013.[WoS][Crossref]
  • 5. D’Agata, E., Klaassen, F., Sciolla, C., Fernandes- -Carretero, A., & Bonnerot, J. M. (2009). Helios: The new design of the irradiation of U-free fuels for americium transmutation. In Proceedings of the Global, 6-11 September 2009 (pp. 2006-2015). Paris, France.
  • 6. Delage, F., Belin, R., Chen, X. -N., D’Agata, E., Klaassen, F., Knol, S., Maschek, W., Ottaviani, J. P., Rineiski, A., Sobolev, V., Somers, J., Staicu, D., Thetford, R., Wallenius, J., & Wernli, B. (2010). Minor actinide transmutation in an accelerator-driven system prototype: Results from fuel developments within the European programme EUROTRANS. In Proceedings of the Actinide and Fission Product Partitioning and Transmutation - Eleventh Information Exchange Meeting, 1-4 November 2010 (pp. 177-186). San Francisco.
  • 7. Haas, D., Fernandez, A., Staicu, D., Somers, J., Maschek, W., Liu, P., & Chen, X. (2008). CERMET fuel behavior and properties in ADS reactors. Energy Conv. Manag., 49, 1928-1933. DOI: 10.1016/j.enconman. 2007.12.027.[Crossref]
  • 8. Ekberg, C., deVisser-Tynova, E., Retegan, T., Sarsfi eld, M., & Wallenius, J. (2014). ASGARD. In Proceedings of the Sustainable Nuclear Energy Conference SNEC, 9-11 April 2014. Manchester.
  • 9. Ouvrier, N., & Boussier, H. (2012). Recycling of MgO, Mo & ZrO2 based actinide-bearing matrices: Assessment of reprocessing feasibility & waste production. Procedia Chem., 7, 322-327. DOI: 10.1016/j. proche.2012.10.051.[Crossref]
  • 10. Loveland, W. D., Morrissey, D. J., & Seaborg, G. T. (2006). Modern nuclear chemistry. New York, NY: Wiley.
  • 11. Taylor, R., Bourg, S., Glatz, J. -P., Modolo, G. (2015). Developement of actinide separation processes for future nuclear fuel cycles in Europe. Nucl. Future, 11(4), 38-43.
  • 12. Courson, O., Lebrun, M., Malmbeck, R., Pagliosa, G., Romer, K., Satmark, B., & Glatz, J. -P. (2000). Partitioning of minor actinides from HLLW using the DIAMEX process. Part 1 - Demonstration of extraction performances and hydraulic behaviour of the solvent in a continuous process. Radiochim. Acta, 88, 857-863. DOI: 10.1524/ract.2000.88.12.857.
  • 13. Serrano-Purroy, D., Christiansen, B., Glatz, J. -P., Malmbeck, R., & Modolo, G. (2005). Towards a DIAMEX process using high active concentrate. Production of genuine solutions. Radiochim. Acta, 93, 357-361. DOI: 10.1524/ract.93.6.357.65645.[Crossref]
  • 14. Serrano-Purroy, D., Baron, P., Christiansen, B., Malmbeck, R., Sorel, C., & Glatz, J. -P. (2005). Recovery of minor actinides from HLLW using the DIAMEX process. Radiochim. Acta, 93, 351-355. DOI: 10.1524/ ract.93.6.351.65642.[Crossref]
  • 15. Baron, P., Hérès, X., Lecomte, M., & Masson, M. (2001). Separation of the minor actinides: the DIAMEX-SANEX concept. In Proceedings of the International Conference on Future Nuclear Systems, GLOBAL’01, 9-13 September 2001. Paris, France.
  • 16. Sasaki, Y., & Choppin, G. R. (1996). Solvent extraction of Eu, Th, U, Np and Am with N,N’-dimethyl- N,N’-dihexyl-3-oxapentanediamide and its analogous compounds. Anal. Sci., 12, 225-230. DOI: 10.2116/ analsci.12.225.[Crossref]
  • 17. Sasaki, Y., & Choppin, G. R. (1998). Extraction of Np(V) by N,N'-dimethyl-N,N'-dihexyl-3-oxapentane- -diamide. Radiochim. Acta, 80, 85-88. DOI: 10.1524/ ract.1998.80.2.85.[Crossref]
  • 18. Sasaki, Y., Sugo, Y., Suzuki, S., & Tachimori, S. (2001). The novel extractants, diglycolamides, for the extraction of lanthanides and actinides in HNO3-ndodecane system. Solvent Extr. Ion Exch., 19, 91-103. DOI: 10.1081/sei-100001376.[Crossref]
  • 19. Modolo, G., Vijgen, H., Schreinemachers, C., Baron, P., & Dinh, B. (2003). TODGA process developement for partitioning of actinides(III) from PUREX raffinate. In Proceedings of the GLOBAL, 16-20 November 2003 (pp. 1926-1930). New Orleans, Louisiana, USA.
  • 20. Geist, A., & Modolo, G. (2009). TODGA process development: an improved solvent formulation. In Proceedings of the GLOBAL (The Nuclear Fuel Cycle: Sustainable Options & Industrial Perspectives), 6-11 September 2009 (pp. 1022-1026, paper 9193). Paris, France.
  • 21. Modolo, G., Asp, H., Schreinemachers, C., & Vijgen, H. (2007). Development of a TODGA based process for partitioning of actinides from a PUREX raffi nate Part I: Batch extraction optimization studies and stability tests. Solvent Extr. Ion Exch., 25, 703-721. DOI: 10.1080/07366290701634578.[Crossref]
  • 22. Magnusson, D., Christiansen, B., Glatz, J. P., Malmbeck, R., Modolo, G., Serrano-Purroy, D., & Sorel, C. (2009). Demonstration of a TODGA based extraction process for the partitioning of minor actinides from a PUREX raffi nate. Solvent Extr. Ion Exch., 27, 26-35, DOI: 10.1080/07366290802544726.[Crossref]
  • 23. Fukasawa, T., & Ozawa, Y. (1986). Relationship between dissolution rate of uranium dioxide pellets in nitric acid solutions and their porosity. J. Radioanal. Nucl. Chem. Lett., 106, 345-356. DOI: 10.1007/ BF02163667.[Crossref]
  • 24. Ryan, J. L., Bray, L. A., Wheelwright, E. J., & Bryan, G. H. (1990). Catalyzed electrolytic plutonium oxide dissolution (CEPOD): The past seventeen years and future potential. United States: American Chemical Society.
  • 25. Uriarte, A. L., & Rainey, R. H. (1965). Dissolution of high-density UO2, PuO2, and UO2-PuO2 pellets in inorganic acids. Commission, U.S.A.E., Oak Ridge, Tennessee: Oak Ridge National Laboratory. (ORNL-3695).
  • 26. Inoue, A. (1988). Enhanced dissolution of PuO2 in nitric acid using uranium(IV). J. Chem. Soc. Faraday Trans., 84, 1195-1197. DOI: 10.1039/F19888401195.
  • 27. Fedorockova, A., & Raschman, P. (2008). Effects of pH and acid anions on the dissolution kinetics of MgO. Chem. Eng. J., 143, 265-272. DOI: 10.1016/j. cej.2008.04.029.[Crossref]
  • 28. Jordan, G., & Rammensee, W. (1996). Dissolution rates and activation energy for dissolution of brucite (001): A new method based on the microtopography of crystal surfaces. Geochim. Cosmochim. Acta, 60, 5055-5062. DOI: 10.1016/S0016-7037(96)00309-2.[Crossref]
  • 29. Lüttge, A., Arvidson, R. S., & Fischer, C. (2013). A stochastic treatment of crystal dissolution kinetics. Elements, 9, 183-188. DOI: 10.2113/gselements. 9.3.183.[Crossref][WoS]
  • 30. Finkeldei, S., Brandt, F., Rozov, K., Bukaemskiy, A. A., Neumeier, S., & Bosbach, D. (2014). Dissolution of ZrO2 based pyrochlores in the acid pH range: A macroscopic and electron microscopy study. Appl. Geochem., 49, 31-41. DOI: 10.1016/j.apgeochem. 2014.06.014.[WoS]
  • 31. Horlait, D., Claparede, L., Tocino, F., Clavier, N., Ravaux, J., Szenknect, S., Podor, R., & Dacheux, N. (2014). Environmental SEM monitoring of Ce1-xLnxO2-x/2 mixed-oxide microstructural evolution during dissolution. J. Mater. Chem., 2, 5193-5203, DOI: 10.1039/C3TA14623E.[Crossref][WoS]
  • 32. Suárez, M. F., & Compton, R. G. (1998). Dissolution of magnesium oxide in aqueous acid: An atomic force microscopy study. J. Phys. Chem. B, 102, 7156-7162. DOI: 10.1021/jp982260x.[Crossref]
  • 33. Tytko, K. H. (1989). Mo: Molybdenum. System number 53. Molybdenum oxide hydrates, oxomolybdenum species in aqueous solutions. Berlin: Springer.
  • 34. Fujii, T., Yamana, H., Watanabe, M., & Moriyama, H. (2001). Extraction of molybdenum from nitric acid by octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide. Solvent Extr. Ion Exch., 19, 127-141. DOI: 10.1081/sei-100001378.[Crossref]
  • 35. Saito, A., & Choppin, G. R. (1998). Complexation of uranyl(VI) with polyoxometalates in aqueous solutions. J. Alloys Compd., 271/273, 751-755. DOI: 10.1016/S0925-8388(98)00200-X.[Crossref]
  • 36. Suzuki, H., Sasaki, Y., Sugo, Y., Apichaibukol, A., & Kimura, T. (2004). Extraction and separation of Am(III) and Sr(II) by N,N,N',N'-tetraoctyl-3-oxapentanediamide (TODGA). Radiochim. Acta, 92, 463-466. DOI: 10.1524/ract.92.8.463.39276.[Crossref]
  • 37. Ansari, S. A., Pathak, P. N., Manchanda, V. K., Husain, M., Prasad, A. K., & Parmar, V. S. (2005). N,N,N',N'-Tetraoctyl diglycolamide (TODGA): a promising extractant for actinide partitioning from high-level waste (HLW). Solvent Extr. Ion Exch., 23, 463-479. DOI: 10.1081/sei-200066296.[Crossref]
  • 38. Cuillerdier, C., Musikas, C., Hoel, P., Nigond, L., & Vitart, X. (1991). Malonamides as new extractants for nuclear waste solutions. Separ. Sci. Technol., 26, 1229-1244. DOI: 10.1080/01496399108050526.[Crossref]
  • 39. Cuillerdier, C., Musikas, C., & Nigond, L. (1993). Diamides as actinide extractants for various waste treatments. Separ. Sci. Technol., 28, 155-175. DOI: 10.1080/01496399308019484.[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.