Preferences help
enabled [disable] Abstract
Number of results
2015 | 60 | 4 | 921-925
Article title

Carbonization of solid uranyl-ascorbate gel as an indirect step of uranium carbide synthesis

Title variants
Languages of publication
The studies of the synthesis of uranium carbide from uranyl-ascorbate gels using the complex sol-gel process (CSGP) have been carried out. The synthesis of uranyl-ascorbate mixture as liquid sol from uranium trioxide and ascorbic acid and solid gel by extraction of water from sol were carefully examined. Ascorbic acid was used as a complexing agent in complex sol-gel process and as a carbon source. The crucial step to obtain final uranium carbides from the aforementioned substrates is the carbonization process. The thermal behavior of ascorbic acid and uranyl-ascorbate gels in a nitrogen atmosphere in the temperature range of 25-900°C were investigated using TG-DTG. Furthermore, the products of the carbonization of uranyl-ascorbate gels in nitrogen, argon and vacuum atmosphere were identified by X-ray diffraction. TG-DTG was used also as a method for determining of carbon residues in the samples.
Physical description
1 - 12 - 2015
18 - 6 - 2015
30 - 12 - 2015
5 - 9 - 2015
  • 1. Chmielewski, A. G. (2008). Nuclear fissile fuels worldwide reserves. Nukleonika, 53(Suppl. 2), S11-S14.
  • 2. Phillips, J. A., Nagley, S. G., & Shaber, E. L. (2012). Fabrication of uranium oxycarbide kernels and compacts for HTR fuel. Nucl. Eng. Des., 251, 261-281.[WoS]
  • 3. Knight, T. W., & Anghaie, S. (2002). Processing and fabrication of mixed uranium/refractory metal carbide fuels with liquid-phase sintering. J. Nucl. Mater., 306, 54-60.
  • 4. Sahoo, B. D., Joshi, K. D., & Gupta, S. C. (2013). Ab initio study on structural stability of uranium carbide. J. Nucl. Mater., 437, 81-86.[WoS]
  • 5. Zverev, D. V., Kirillov, S. N., Dvoeglazov, K. N., Shadrin, A. Y., Logunov, M. V., Mashkin, A. N., Schmidt, O. V., & Arseenkov, L. V. (2012). Possible options for uranium-carbide SNF processing. Procedia Chem., 7, 116-122.
  • 6. Deptula, A., Brykala, M., Lada, W., Wawszczak, D., Olczak, T., & Chmielewski, A. G. (2014). Polish Patent PL 219069. Warsaw, Polish Patent Office.
  • 7. Deptula, A., Lada, W., Olczak, T., Lanagan, M. T., Dorris, S. E., Goretta, K. C., & Poeppel, R. B. (1997). Polish Patent No. 172618. Warsaw, Polish Patent Office.
  • 8. Deptula, A., Lada, W., Olczak, T., Borello, A., Alvani, C., & Di Bartolomeo, A. (1992). Preparation of spherical powders of hydroxyapatite by sol-gel process. J. Non-Cryst. Solids, 147/148, 537-541.
  • 9. Deptula, A., Brykala, M., Lada, W., Olczak, T., Sartowska, B., & Chmielewski, A. G. (2009). Preparation of spherical particles of Li2TiO3 (with diameters below 100 μm) by sol-gel process. Fusion Eng. Des., 84, 681-684.[WoS]
  • 10. Deptula, A., Brykala, M., Lada, W., Olczak, T., Wawszczak, D., Modolo, G., Daniels, H., & Chmielewski, A. G. (2010). Synthesis of uranium dioxides by complex sol-gel processes (CSGP). In Proceedings of the 3rd International Conference on Uranium, 40th Annual Hydrometallurgy Meeting (Vol. II, pp. 145-154). Saskatoon, Saskatchewan, Canada.
  • 11. Brykala, M., Deptula, A., Rogowski, M., Lada, W., Olczak, T., Wawszczak, D., Smolinski, T., Wojtowicz, P., & Modolo, G. (2014). Synthesis of microspheres of triuranium octaoxide by simultaneous water and nitrate extraction from ascorbate-uranyl sols. J. Radioanal. Nucl. Chem., 299, 651-655.[WoS]
  • 12. Chmielewski, A. G. (2011). Chemistry for the nuclear energy of the future. Nukleonika, 56(3), 241-249.
  • 13. Novakova, L., Solich, P., & Solichova, D. (2008). HPLC methods for simultaneous determination of ascorbic and dehydroascorbic acids. Trends Anal. Chem., 27, 942-958.
  • 14. Huang, J. S., Yang, L., & Liu, K. Y. (2011). One-pot syntheses of Li3V2(PO4)3/C cathode material for lithium ion batteries via ascorbic acid reduction approach. Mater. Chem. Phys., 128, 470-474.[WoS]
  • 15. Yan, Z., Cai, S., Miao, L., Zhou, X., & Zhao, Y. (2012). Synthesis and characterization of in situ carbon-coated Li2FeSiO4 cathode materials for lithium ion battery. J. Alloys Compd., 511, 101-106.
  • 16. Yong, S. M., Muralidharan, P., Kim, D. S., & Kim, D. K. (2011). One-step hydrothermal synthesis of carbon-coated PbTe nanowires for thermoelectric applications. Rev. Adv. Mater. Sci., 28, 13-16.
  • 17. Yong, S. M., Muralidharan, P., Jo, S. H., & Kim, D. K. (2010). One-step hydrothermal synthesis of CdTe nanowires with amorphous carbon sheaths. Mater. Lett., 64, 1551-1554.
  • 18. Gregorczyk, Z. (1958). Determination of coordination numbers of complexes formed by ascorbic acid with uranyl or titanyl ions. Acta. Pol. Pharm., 15, 129-140.
  • 19. Sobkowska, A., & Minczewski, J. (1961). Potentiometric investigation of the system UO2 2+-ascorbic acid. Roczniki Chemiczne, 35, 47-58.
  • 20. Jingyan, S., Yuwen, L., Zhiyong, W., & Cunxin, W. (2013). Investigation of thermal decomposition of ascorbic acid by TG-FTIR and thermal kinetics analysis. J. Pharm. Biomed. Anal., 77, 116-119.[WoS]
  • 21. Shephard, A. B., Nichols, S. C., & Braithwaite, A. (1999). Moisture induced solid phase degradation of L-ascorbic acid part 3: structural characterization of the degradation products. Talanta, 48, 607-622.
  • 22. Juhász, M., Kitahara, Y., & Fujii, T. (2011). Thermal decomposition of vitamin C: an evolved gas analysis- ion attachment mass spectrometry study. Food Chem., 129, 546-550.[WoS]
  • 23. Vernin, G., Chakib, S., Rogacheva, S. M., Obretenov, T. D., & Parkanyi, C. (1998). Thermal decomposition of ascorbic acid. Carbohydr. Res., 305, 1-15.
  • 24. Juhász, M., Kitahara, Y., Takahashi, S., & Fujii, T. (2012). Thermal stability of vitamin C: thermogravimetric analysis and use of total ion monitoring chromatograms. J. Pharm. Biomed. Anal., 59, 190-193.[WoS]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.