Preferences help
enabled [disable] Abstract
Number of results
2015 | 60 | 4 | 893-898
Article title

Physico chemical properties of irradiated i-SANEX diluents

Title variants
Languages of publication
The development of effective processes to recover minor actinides from spent nuclear fuel cannot leave out of consideration the evaluation of the impact of ionizing radiations on safety, fluid dynamics and extraction efficiency. It is common knowledge from the literature that radiation damage mainly affects the diluents and, indirectly, the extractants [1], but a lack of knowledge remains regarding the radiolytic behavior of innovative selective actinide extraction (i-SANEX) diluents [2, 3]. As natural prosecution of the work already performed on diluted nitric acid solutions [4], 0.44 M nitric acid solutions were irradiated in contact with a mixture of kerosene + 5 vol.% 1-octanol by a Co-60 source at 2.5 kGy/h dose rate and up to 100 kGy absorbed dose, conditions of interest for the future industrial facility. Density, viscosity, acidity, nitrate anion concentration and phase transfers were systematically measured before and after γ-irradiation. This was performed because radiation-induced modifications of these parameters may induce alterations of both the fluid dynamics and the separation performances of the extracting system. The results suggest that the fluid-dynamics of the system should be unaltered. In fact, only slight alterations of the organic phase viscosity and of the aqueous phase acidity were measured after irradiation, suggesting the occurrence of limited phase transfers and of diluent by-products formation.
Physical description
1 - 12 - 2015
19 - 6 - 2015
21 - 8 - 2015
30 - 12 - 2015
  • 1. Mincher, B. J., Modolo, G., & Mezyk, S. P. (2009). The effects of radiation chemistry on solvent extraction: 1. Conditions in acidic solution and a review of TBP radiolysis. Solvent Extr. Ion Exch., 27, 1-25. DOI: 10.1080/07366290802544767.[Crossref]
  • 2. Tripathi, S. C., & Ramanujam, A. (2003). Effect of radiation-induced physicochemical transformations on density and viscosity of 30% TBP-n-dodecane- -HNO3 system. Separ. Sci. Technol., 38, 2307-2326. DOI: 10.1081/SS-120021626.[Crossref]
  • 3. Bourg, S., Poinssot, C., Geist, A., Cassayre, L., Rhodes, C., & Ekberg, C. (2012). Advanced reprocessing developments in Europe status on European projects ACSEPT and ACTINET-I3. Procedia Chem., 7, 166-171. DOI: 10.1016/j.proche.2012.10.028.[Crossref]
  • 4. Mossini, E., Macerata, E., Giola, M., Brambilla, L., Castiglioni, C., & Mariani, M. (2015). Radiation- -induced modifications on physico chemical properties of diluted nitric acid solutions within advanced spent nuclear fuel reprocessing. J. Radioanal. Nucl. Chem., 304, 395-400. DOI: 10.1007/s10967-014-3556-5.[Crossref][WoS]
  • 5. Bourg, S., Hill, C., Caravaca, C., Rhodes, C., Ekberg, C., Taylor, R., Geist, A., Modolo, G., Cassayre, L., Malmbeck, R., Harrison, M., de Angelis, G., Espartero, A., Bouvet, S., & Ouvrier, N. (2009). ACSEPT-Partitioning technologies and actinide science: towards pilot facilities in Europe. Nucl. Eng. Des., 241, 3425-3427. DOI: 10.1016/j.nucengdes. 2011.03.011.1.[Crossref][WoS]
  • 6. Mincher, B. J., Modolo, G., & Mezyk, S. P. (2010). The effects of radiation chemistry on solvent extraction 4: separation of the trivalent actinides and considerations for radiation-resistant solvent system. Solvent Extr. Ion Exch., 28, 415-436. DOI: 10.1080/07366299.2010.485548.[Crossref]
  • 7. Pikaev, A. K., Kabakchi, S. A., & Egorov, G. F. (1988). Some radiation chemical aspects of nuclear engineering. Radiat. Phys. Chem., 31, 789-803. DOI: 10.1016/1359-0197(88)90260-3.[Crossref]
  • 8. Tripathi, S. C., Bindu, P., & Ramanujam, A. (2001). Studies on the identification of harmful radiolytic products of 30% TBP-n-dodecane-HNO3 by gas liquid chromatography. I. Formation of diluent degradation products and their role in Pu retention behavior. Separ. Sci. Technol., 36, 1463-1478. DOI: 10.1081/ SS-100103882.[Crossref]
  • 9. Krishnamurthy, M. V., & Sampathkumar, R. (1992). Radiation-induced decomposition of the tributyl phosphate-nitric acid system: role of nitric acid. J. Radioanal. Nucl. Chem., 166, 421-429. DOI: 10.1007/ BF02167787.[Crossref]
  • 10. Tripathi, S. C., & Ramanujam, A. (2003). Effect of radiation induced physicochemical transformation on density and viscosity of 30% TBP-n-dodecane-HNO3 systems. Separ. Sci. Technol., 38, 2307-2326. DOI: 10.1081/SS-120021626.[Crossref]
  • 11. Sugo, Y., Sasaki, Y., & Tachimori, S. (2002). Studies on hydrolysis and radiolysis of N,N,Nʹ,Nʺ-tetraoctyl-3-oxapentane-1,5-diamide. Radiochim. Acta, 90, 161-165. DOI: 10.1524/ract.2002.90.3_2002.161.[Crossref]
  • 12. Sugo, Y., Izumi, Y., Yoshida, Y., Nishijima, S., Sasaki, Y., Kimura, T., Sekine, T., & Kudo, H. (2007). Infl uence of diluent on radiolysis of amides in organic solution. Radiat. Phys. Chem., 76, 794-800. DOI: 10.1016/j.radphyschem.2006.05.008.[Crossref][WoS]
  • 13. Ansari, S. A., Pathak, P., Mohapatra, P. K., & Manchanda, V. K. (2012). Chemistry of diglycolamides: promising extractants for actinide partitioning. Chem. Rev., 112, 1751-1772. DOI: 10.1021/cr200002f.[Crossref][WoS]
  • 14. Katsumura, Y., Jiang, P. Y., Nagaishi, R., Yotsuyanagi, T., & Ishigure, K. (1994). γ-Radiolysis study of concentrated nitric acid solutions. J. Chem. Soc. Faraday Trans., 90, 93-95. DOI: 10.1039/FT9949000093.[Crossref]
  • 15. Savel’ev, Y. I., Ershova, Z. V., & Vladimirova, M. V. (1967). γ-Radiolysis of aqueous solutions of nitric acid. Sov. Radiochem., 9, 221-225.
  • 16. Kazanjian, A. R., Miner, F. J., Brown, A. K., Hagan, P. G., & Berry, J. W. (1970). Radiolysis of nitric acid solutions: L.E.T. effects. Trans. Faraday Soc., 66, 2192-2198. DOI: 10.1039/TF9706602192.[Crossref]
  • 17. Katsumura, Y., Jiang, P. Y., Nagaishi, R., Oishi, T., Ishigure, K., & Yoshida, Y. (1991). Pulse radiolysis study of aqueous nitric acid solutions. Formation mechanism, yield, and reactivity of NO3 radical. J. Phys. Chem., 95, 4435-4439. DOI: 10.1021/ j100164a050.[Crossref]
  • 18. Bhattacharyya, P. K., & Natarajan, P. R. (1991). Radiation chemistry of actinide solutions. In A. J. Freeman, & C. Keller (Eds.), Handbook on the physics chemistry of the actinides (Chapter 13). Amsterdam: Elsevier.
  • 19. Nagaishi, R. (2001). A model for radiolysis of nitric acid and its application to the radiation chemistry of uranium ion in nitric acid medium. Radiat. Phys. Chem., 60, 369-375. DOI: 10.1016/S0969-806X(00)00410-2.[Crossref]
  • 20. Taylor, J. R. (1996). An introduction to error analysis: The study of uncertainties in physical measurements. 2nd ed. Sausalito: Univ. Science Books.
  • 21. Geist, A. (2010). Extraction of nitric acid into alcohol: Kerosene mixtures. Solvent Extr. Ion Exch., 28, 596-607. DOI: 10.1080/07366299.2010.499286.[Crossref]
  • 22. Nash, K. L., & Lumetta, G. J. (2011). Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment. Cambridge: Woodhead Publishing Limited.
  • 23. Aksenenko, V. M., Murav’ev, N. S., & Taranenko, G. S. (1986). Raman scattering study of nitric acid solutions. J. Appl. Spectrosc., 44, 87-91. DOI: 10.1007/ BF00658324.[Crossref]
  • 24. Maddigapu, P. R., Minero, C., Maurino, V., Vione, D., Brigante, M., Charbouillot, T., Sarakha, M., & Mailhot, G. (2011). Photochemical and photosensitised reactions involving 1-nitronaphthalene and nitrite in aqueous solution. Photochem. Photobiol. Sci., 10, 601-609. DOI: 10.1039/c0pp00311e.[WoS][Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.