Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 60 | 4 | 865-869

Article title

The effect of SO3-Ph-BTBP on stainless steel corrosion in nitric acid

Content

Title variants

Languages of publication

EN

Abstracts

EN
SO3-Ph-BTBP is a hydrophilic tetra-N-dentate ligand proposed for An(III)/Ln(III) separation by solvent extraction, and a candidate for use in future advanced reprocessing schemes such as GANEX and SANEX. We present the first study of the effect of SO3-Ph-BTBP on the corrosion behavior of stainless steels. Specifically, studies have been performed using steels and conditions equivalent to those found in relevant nuclear reprocessing flow sheets. SO3-Ph-BTBP has been shown to have little effect on either steel passivation or reductive dissolution. However, if driven cathodically into a region of hydrogen evolution at the electrode surface or conversely anodically into a region of transpassive dissolution, observed currents are reduced in the presence of SO3-Ph-BTBP, suggesting corrosion inhibition of the steel potentially through weak absorption of a SO3-Ph-BTBP layer at the metal-solution interface. The lack of any observed corrosion acceleration via complexation of Fe3+ is surprising and has been suggested to be due to the slow extraction kinetics of SO3-Ph-BTBP as a result of a requirement for a trans- to cis-conformational change before binding.

Publisher

Journal

Year

Volume

60

Issue

4

Pages

865-869

Physical description

Dates

published
1 - 12 - 2015
received
19 - 6 - 2015
accepted
21 - 8 - 2015
online
30 - 12 - 2015

Contributors

  • The LRF Centre for Nuclear Engineering, Engineering Department, Lancaster University, Bailrigg, Lancashire, LA1 4YR, United Kingdom, Tel.: +44(0)1524 593109
author
  • The LRF Centre for Nuclear Engineering, Engineering Department, Lancaster University, Bailrigg, Lancashire, LA1 4YR, United Kingdom, Tel.: +44(0)1524 593109,

References

  • 1. Bell, K., Carpentier, C., Carrott, M. J., Geist, A., Gregson, C., Hères, X., Magnusson, D., Malmbeck, R., McLachlan, F., Modolo, G., Mullich, U., Sypula, M., Taylor, R. J., & Wilden, A. (2012). Progress towards the development of a new GANEX process. Procedia Chem., 7, 392-397.
  • 2. Carrott, M. J., Bell, K., Brown, J., Geist, A., Gregson, C., Hères, X., Maher, C., Malmbeck, R., Mason, C., Modolo, G., Mullich, U., Sarsfield, M., Wilden, A., & Taylor, R. J. (2014). Development of a new fl owsheet for co-separating the transuranic actinides: The “EURO-GANEX” process. Solvent Extr. Ion Exch., 32(5), 447-467.[WoS]
  • 3. McKibben, J. M. (1984). Chemistry of the PUREX process. Radiochim. Acta, 36, 3-15.
  • 4. Tkac, P., Precek, M., & Paulenova, A. (2009). Redox reactions of Pu(IV) and Pu(III) in the presence of acetohydroxamic acid in HNO3 solutions. Inorg. Chem., 48, 11935-11944.[WoS]
  • 5. Taylor, R. J., May, I., Wallwork, A. L., Denniss, I. S., Hill, N. J., Galkin, B. Ya., Zilberman, B. Y., & Fedorov, Yu. S. (1998). The applications of formo- and aceto-hydroxamic acids in nuclear fuel reprocessing. J. Alloys Compd., 271/273, 534-537.
  • 6. Carrott, M. J., Fox, O. D., Le Gurun, G., Jones, C. J., Mason, C., Taylor, R. J., Andrieux, F. P. L., & Boxall, C. (2008). Oxidation-reduction reactions of simple hydroxamic acids and plutonium(IV) ions in nitric acid. Radiochim. Acta, 96, 333-343.
  • 7. Bathke, C. G., Ebbinghaus, B. B., Collins, B. A., Sleaford, B. W., Hase, K. R., Robel, M., Wallace, R. K., Bradley, K. S., Ireland, J. R., Jarvinen, G. D., Johnson, M. W., Prichard, A. W., & Smith, B. W. (2012). The attractiveness of materials in advanced nuclear fuel cycles for various proliferation and theft scenarios. Nucl. Technol., 179(1), 5-30.
  • 8. Panak, P. J., & Geist, A. (2013). Complexation and extraction of trivalent actinides and lanthanides by triazinylpyridine N-donor ligands. Chem. Rev., 113, 1199-1236.[WoS]
  • 9. Benay, G., Schurhammer, R., & Wipff, G. (2011). Basicity, complexation ability and interfacial behavior of BTBPs: a simulation study. Phys. Chem. Chem. Phys., 13, 2922-2934.
  • 10. Geist, A., Mullich, U., Modolo, G., & Wilden, A. (2012). Selective aqueous complexation of actinides with hydrophilic BTP and BTBP: Towards improved i-SANEX processes. In 11th Information Exchange Meeting Actinide and Fission Product Partitioning and Transmutation (pp. 1-9). Organisation for Fig. 4. Cis- and trans-conformations of SO3-Ph-BTBP. Economic Co-operation and Development - Nuclear Energy Agency: San Francisco, USA.
  • 11. Lewis, F. W., Harwood, L. M., Hudson, M. J., Drew, M. G. B., Wilden, A., Sypula, M., Modolo, G., Vu, T., Simonin, J., Vidick, G., Bouslimani, N., & Desreux, J. F. (2012). From BTBPs to BTPhens: The effect of ligand pre-organisation on the extraction properties of quadridentate bis-triazine ligands. Procedia Chem., 7, 231-238.
  • 12. Lewis, F. W., Harwood, L. M., Hudson, M. J., Drew, M. G. B., Hubscher-Bruder, V., Videva, V., Arnaud- -Neu, F., Stamberg, K., & Vyas, S. (2013). BTBPs versus BTPhens: Some reasons for their differences in properties concerning the partitioning of minor actinides and the advantages of BTPhens. Inorg.Chem., 52, 4993-5005.[WoS]
  • 13. Geist, A., Mullich, U., Magnusson, D., Kaden, P., Modolo, G., Wilden, A., & Zevaco, T. (2012). Actinide(III)/lanthanide(III) separation via selective aqueous complexation of actinides(III) using a hydrophilic 2,6-bis(1,2,4-triazin-3-Yl)-pyridine in nitric acid. Solvent Extr. Ion Exch., 30, 433-444.
  • 14. Andrieux, F. P. L., Boxall, C., & Taylor, R. J. (2008). The hydrolysis of hydroxamic acid complexants in the presence of non-oxidising metal ions 2: Neptunium (IV) ions. J. Solution Chem., 37, 215-232.[WoS]
  • 15. Trumm, S., Lieser, G., Foreman, M. R. S. J., Panak, P. J., Geist, A., & Fanghanel, T. (2010). A TRLFS study on the complexation of Cm(III) and Eu(III) with 4-t-butyl-6,6ʹ-bis-(5,6-diethyl-1,2,4-triazin-3-yl)-2,2ʹ-bipyridine in a water/2-propanol mixture. Dalton Trans., 39, 923-929.[WoS]
  • 16. Traister, G. L., & Schilt, A. A. (1976). Water-soluble sulfonated chromogenic reagents of the ferroin type and determination of iron and copper in water, blood serum, and beer with the tetraammonium salt of 2,4-bis(5,6-diphenyl-1,2,4-triazin-3-yl)pyridinetetrasulfonic acid. Anal. Chem., 48, 1216-1220.
  • 17. Padhy, N., Paul, R., Mudali, U. K., & Raj, B. (2011). Morphological and compositional analysis of passive film on austenitic stainless steel in nitric acid medium. Appl. Surf. Sci., 257, 5088-5097.[WoS]
  • 18. Fauvet, P., Balbaud, F., Robin, R., Tran, Q. T., Mugnier, A., & Espinoux, D. (2008). Corrosion mechanisms of austenitic stainless steels in nitric media used in reprocessing plants. J. Nucl. Mater., 375, 52-64.[WoS]
  • 19. Sicsic, D., Balbaud-Celerier, F., & Tribollet, B. (2014). Mechanism of nitric acid reduction and kinetic modelling. Eur. J. Inorg. Chem., 2014(36), 6174-6184.[WoS][Crossref]
  • 20. Abd El-Maksoud, S. A., & Fouda, A. S. (2005). Some pyridine derivatives as corrosion inhibitors for carbon steel in acidic medium. Mater. Chem. Phys., 93, 84-90.
  • 21. Ergun, U., Yuzer, D., & Emregul, K. C. (2008). The inhibitory effect of bis-2,6-(3,5-dimethylpyrazolyl) pyridine on the corrosion behaviour of mild steel in HCl solution. Mater. Chem. Phys., 109, 492-499.[WoS]
  • 22. Tebbji, K., Oudda, H., Hammouti, B., Benkaddour, M., El Kodadi, M., & Ramdani, A. (2005). Inhibition effect of two organic compounds pyridine-pyrazole type in acidic corrosion of steel. Colloids Surf. A, 259, 143-149.
  • 23. Kosari, A., Moayed, M. H., Davoodi, A., Parvizi, R., Momeni, M., Eshghi, H., & Moradi, H. (2014). Electrochemical and quantum chemical assessment of two organic compounds from pyridine derivatives as corrosion inhibitors for mild steel in HCl solution under stagnant condition and hydrodynamic flow. Corros. Sci., 78, 138-150[WoS]
  • 24. Hayward, T. M., Svishchev, I. M., & Makhija, R. C. (2003). Stainless steel flow reactor for supercritical water oxidation: corrosion tests. J. Supercrit. Fluids, 27(3), 275-281.
  • 25. Caire, J. P., Laurent, F., Cullie, S., Dalard, F., Fulconis, J. M., & Delagrange, H. (2003). AISI 304 L stainless steel decontamination by a corrosion process using cerium IV regenerated by ozone - Part I: Study of the accelerated corrosion process. J. Appl. Electrochem., 33, 703-708.
  • 26. Armijo, J. S. (1968). Intergranular corrosion of nonsensitized austenitic stainless steels. Corrosion, 24, 24-30.[Crossref]
  • 27. Byrne, J. P., Kitchen, J. A., & Gunnlaugsson, T. (2014). The BTP [2,6-bis(1,2,3-triazol-4-yl)pyridine] binding motif: a new versatile terdentate ligand for supramolecular and coordination chemistry. Chem. Soc. Rev., 43, 5302-5325.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_nuka-2015-0117
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.