Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 60 | 4 | 829-835

Article title

Development of the Chalmers Grouped Actinide Extraction Process

Content

Title variants

Languages of publication

EN

Abstracts

EN
Several solvents for Grouped ActiNide EXtraction (GANEX) processes have been investigated at Chalmers University of Technology in recent years. Four different GANEX solvents; cyclo-GANEX (CyMe4- -BTBP, 30 vol.% tri-butyl phosphate (TBP) and cyclohexanone), DEHBA-GANEX (CyMe4-BTBP, 20 vol.% N,N-di-2(ethylhexyl) butyramide (DEHBA) and cyclohexanone), hexanol-GANEX (CyMe4-BTBP, 30 vol.% TBP and hexanol) and FS-13-GANEX (CyMe4-BTBP, 30 vol.% TBP and phenyl trifluoromethyl sulfone (FS-13)) have been studied and the results are discussed and compared in this work. The cyclohexanone based solvents show fast and high extraction of the actinides but a somewhat poor diluent stability in contact with the acidic aqueous phase. FS-13-GANEX display high separation factors between the actinides and lanthanides and a good radiolytic and hydrolytic stability. However, the distribution ratios of the actinides are lower, compared to the cyclohexanone based solvents. The hexanol-GANEX is a cheap solvent system using a rather stable diluent but the actinide extraction is, however, comparatively low.

Publisher

Journal

Year

Volume

60

Issue

4

Pages

829-835

Physical description

Dates

published
1 - 12 - 2015
accepted
21 - 8 - 2015
received
25 - 6 - 2015
online
30 - 12 - 2015

Contributors

  • Nuclear Chemistry & Industrial Materials Recycling, Department of Chemical and Biochemical Engineering, Chalmers University of Technology, Kemigården 4, 41296 Gothenburg, Sweden, Tel.: +46(0)31 772 2920
  • Nuclear Chemistry & Industrial Materials Recycling, Department of Chemical and Biochemical Engineering, Chalmers University of Technology, Kemigården 4, 41296 Gothenburg, Sweden, Tel.: +46(0)31 772 2920
  • Nuclear Chemistry & Industrial Materials Recycling, Department of Chemical and Biochemical Engineering, Chalmers University of Technology, Kemigården 4, 41296 Gothenburg, Sweden, Tel.: +46(0)31 772 2920
author
  • Nuclear Chemistry & Industrial Materials Recycling, Department of Chemical and Biochemical Engineering, Chalmers University of Technology, Kemigården 4, 41296 Gothenburg, Sweden, Tel.: +46(0)31 772 2920

References

  • 1. Madic, C., Testard, F., Hudson, M., Liljenzin, J. -O., Christiansen, B., Ferrando, M., Facchini, A., Geist, A., Modolo, G., Gonzalez-Espartero, A., & De Mendoza, J. (2004). PARTNEW New solvent extraction processes for minor actinides. Final report. CEA. (Report CEA-R-6066).
  • 2. Aoki, S. (2002). Research and development in Japan on long-lived nuclide partitioning and transmutation technology. Prog. Nucl. Energy, 40, 343-348.
  • 3. Salvatores, M., Slessarev, I., Ritter, G., Fougeras, P., Tchistiakov, A., Youinou, G., & Zaetta, A. (1998). Long-lived radioactive waste transmutation and the role of accelerator driven (hybrid) systems. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 414, 5-20.
  • 4. Mtingwa, S. K. (2005). Feasibility of transmutation of radioactive elements. In An international spent nuclear fuel storage facility-exploring a Russian site as a prototype: Proceedings of an international workshop (pp. 30-49). The National Academies Press: Washington, DC.
  • 5. Todd, T., Law, J., Herbst, R., Lumetta, G., & Moyer, B. (2000). Treatment of radioactive wastes using liquid-liquid extraction technologies-fears, facts, and issues. In Waste Management 00, 27 February - 2 March 2000. Tucson, AZ, USA.
  • 6. Anderson, H., Newton, M., Asprey, L., & Richmond, C. (1960). U.S. Patent No. 2,924,506. California: U.S. Patent and Trademark Offi ce.
  • 7. Aneheim, E., Ekberg, C., Fermvik, A., Foreman, M. R. S. J., Retegan, T., & Skarnemark, G. (2010). A TBP/BTBP-based GANEX separation process. Part 1: Feasibility. Solvent Extr. Ion Exch., 28, 437-458.
  • 8. Löfström-Engdahl, E., Aneheim, E., Ekberg, C., Foreman, M., & Skarnemark, G. (2013). Comparison of the extraction as a function of time in two GANEX solvents: Infl uence of metal loading, interfacial tension, and density. Solvent Extr. Ion Exch., 31, 604-616.
  • 9. Löfström-Engdahl, E., Aneheim, E., Ekberg, C., Foreman, M., & Skarnemark, G. (2014). A comparison of americium extractions as a function of time using two bis-triazine-bipyridine ligands in long-chained alcohol diluents. Separ. Sci. Technol., 49, 2060-2065.[WoS]
  • 10. Halleröd, J., Ekberg, C., Foreman, M., Löfström- -Engdahl, E., & Aneheim, E. (2015). Stability of phenyl trifl uoromethyl sulfone as diluent in a grouped actinide extraction process. J. Radioanal. Nucl. Chem., 304, 287-291.
  • 11. ACSEPT: Final Report Summary (2013). ACSEPT (Actinide reCycling by SEParation and Transmutation). Retrieved June 24, 2015 from http://cordis.europa.eu/result/rcn/56366en.html.
  • 12. Adnet, J. M., Miguirditchian, M., Hill, C., Heres, X., Lecomte, M., Masson, M., Brossard, P., & Baron, P. (2005). Development of new hydrometallurgical processes for actinide recovery: GANEX concept. In Proceedings of GLOBAL, October 9-13, 2005. Tsukuba, Japan.
  • 13. Carrott, M., Bell, K., Brown, J., Geist, A., Gregson, C., Héres, X., Maher, C., Malmbeck, R., Mason, C., Modolo, G., Müllich, U., Sarsfi eld, M., Wilden, A., & Taylor, R. (2014). Development of a new fl owsheet for co-separating the transuranic actinides: the “EURO-GANEX” process. Solvent Extr. Ion Exch., 32(5), 447-467.[WoS]
  • 14. Foreman, M. R. S. J., Hudson, M. J., Geist, A., Madic, C., & Weigl, M. (2005). An investigation into the extraction of americium(III), lanthanides and d-block metals by 6,6ʹ-bis-(5,6-dipentyl-[1,2,4] triazin-3-yl)-[2,2ʹ]bipyridinyl (C5-BTBP). Solvent Extr. Ion Exch., 23, 645-662.
  • 15. Nilsson, M., Ekberg, C., Foreman, M., Hudson, M., Liljenzin, J. -O., Modolo, G., & Skarnemark, G. (2006). Separation of actinides(III) from lanthanides( III) in simulated nuclear waste streams using 6,6ʹ-bis-(5,6-dipentyl-[1,2,4]triazin-3-yl)-[2,2ʹ]bipyridinyl (C5-BTBP) in cyclohexanone. Solvent Extr. Ion Exch., 24, 823-843.
  • 16. Warf, J. C. (1949). Extraction of cerium (IV) nitrate by butyl phosphate. J. Am. Chem. Soc., 71, 3257-3258.[Crossref]
  • 17. Schulz, W., & Navratil, J. (1984). Science and technology of tributyl phosphate. Vol. 1. CRC Press Inc.
  • 18. Löfström-Engdahl, E. (2014). On the diluent and solvent effects in liquid-liquid extraction systems based on bis-triazine-bipyridine (BTBP) ligands. Doctoral dissertation, Chalmers University of Technology, Gothenburg, Sweden.
  • 19. Madic, C., & Hudson, M. J. (1998). High level liquid waste partitioning by means of completely incinerable extractants. (Tech. Rep. EUR 18038, European Commission Contract No. FI2W-CT91-0112).
  • 20. Shevchenko, V., & Smelov, V. (1958). The effect of mono- and dibutyl phosphates on the extraction of plutonium with tributyl phosphate. Sov. J. Atom. Energy, 5, 1455-1459.[Crossref]
  • 21. Clayden, J., Greeves, N., Warren, S., & Wothers, P. (2001). Organic chemistry (pp. 181-208). Oxford University Press.
  • 22. Nair, G., Mahajan, G., & Prabhu, D. (1995). Extraction of uranium (VI) and plutonium (IV) with some high molecular weight aliphatic monoamides from nitric acid medium. J. Radioanal. Nucl. Chem., 191, 323-330.
  • 23. Prabhu, D., Mahajan, G., & Nair, G. (1997). Di(2-ethylhexyl)butyramide and di(2-ethylhexyl) isobutyramide as extractants for uranium(VI) and plutonium(IV). J. Radioanal. Nucl. Chem., 224, 113-117.
  • 24. Aneheim, E. (2012). Development of a solvent extraction process for group actinide recovery from used nuclear fuel. Doctoral dissertation, Chalmers University of Technology, Gothenburg, Sweden.
  • 25. Nilsson, M., Andersson, S., Drouet, F., Ekberg, C., Foreman, M., Hudson, M., Liljenzin, J. -O., Magnusson, D., & Skarnemark, G. (2006). Extraction properties of 6,6ʹ-bis-(5,6-dipentyl-[1,2,4]triazin-3- yl)-[2,2ʹ] bipyridine (C5-BTBP). Solvent Extr. Ion Exch., 24, 299-318.
  • 26. Geist, A., Magnusson, D., & Müllich, U. (2012). A kinetic study on the extraction of americium(III) into CyMe4-BTBP. In Twelfth Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation (12-IEMPT) (pp. 24-27). Prague, Czech Republic.
  • 27. Retegan, T., Berthon, L., Ekberg, C., Fermvik, A., Skarnemark, G., & Zorz, N. (2009). Electrospray ionization mass spectrometry investigation of BTBP-lanthanide(III) and actinide(III) complexes. Solvent Extr. Ion Exch., 27, 663-682.
  • 28. Weast, R. C. (1975-1976). Organic compounds. In R. C. Weast (Ed.), Handbooks of chemistry and physics (C-259). Cleveland, Ohio: CRC Press.
  • 29. Ekberg, C., Aneheim, E., Fermvik, A., Foreman, M., Löfström-Engdahl, E., Retegan, T., & Spendlikova, I. (2010). Thermodynamics of dissolution for bis (triazine)-bipyridine-class ligands in different diluents and its refl ection on extraction. J. Chem. Eng. Data, 55, 5133-5137.[WoS][Crossref]
  • 30. Retegan, T., Ekberg, C., Dubois, I., Fermvik, A., Skarnemark, G., & Wass, T. J. (2007). Extraction of actinides with different 6,6ʹ-bis(5,6-dialkyl-[1,2,4]- triazin-3-yl)-[2,2ʹ]-bipyridines (BTBPs). Solvent Extr. Ion Exch., 25, 417-431.
  • 31. Okushita, H., Yoshikawa, M., & Shimidzu, T. (1995). Pervaporation of cyclohexane/cyclohexanone/ cyclohexanol mixture through polyoxyethylene grafting nylon 6 membrane. J. Membrane Sci., 105, 51-53.
  • 32. Riddick, J. A., Bunger, W. B., & Sakano, T. (1970). Techniques of chemistry. In Organic solvents. Vol. 2. New York: Wiley-Interscience.
  • 33. Ambrose, M., & Hamblet, C. (1951). U.S. Patent No. 2,557,282. Soltzberg.
  • 34. Löfström-Engdahl, E., Aneheim, E., Ekberg, C., & Skarnemark, G. (2013). A reinterpretation of C5- -BTBP extraction data, performed in various alcohols. J. Radioanal. Nucl. Chem., 296, 733-737.
  • 35. Law, J., Herbst, R., Todd, T., Romanovskiy, V., Babain, V., Esimantovskiy, V., Smirnov, I., & Zaitsev, B. (2001). The universal solvent extraction (UNEX) process. II. Flowsheet development and demonstration of the UNEX process for the separation of cesium, strontium, and actinides from actual acidic radioactive waste. Solvent Extr. Ion Exch., 19, 23-36.
  • 36. Sinha, P., Kumar, S., Kamachi Mudali, U., & Natarajan, R. (2011). Thermal stability of UNEX/ HCCD-PEG diluent FS-13. J. Radioanal. Nucl. Chem., 289, 899-901.
  • 37. Rzhekhina, E., Karkozov, V., Alyapyshev, M. Y., Babain, V., Smirnov, I., Todd, P., Law, J., & Herbst, R. (2007). Reprocessing of spent solvent of the UNEX process. Radiochemistry, 49, 493-498.[Crossref]
  • 38. Romanovskiy, V., Smirnov, I., Babain, V., Todd, T., Herbst, R., Law, J., & Brewer, K. (2001). The universal solvent extraction (UNEX) process. I. Development of the UNEX process solvent for the separation of cesium, strontium, and the actinides from acidic radioactive waste. Solvent Extr. Ion Exch., 19, 1-21.
  • 39. Bart, H. J., & Stevens, G. (2004). Reactive solvent extraction. In Y. Marcus, & A. K. SenGupta (Eds.), Ion exchange and solvent extraction. (A Series of Advances, Vol. 17, pp. 37-84). Boca Raton: CRC Press Inc.
  • 40. Blass, E. F. (2004). Engineering design and calculation of extractors for liquid liquid systems. In J. Rydberg, M. Cox, C. Musikas, & G. Choppin (Eds.), Solvent extraction principles and practice (pp. 367-414). New York: Marcel Dekker Inc.
  • 41. Foreman, M., Hudson, M., Drew, M., Hill, C., & Madic, C. (2006). Complexes formed between the quadridentate, heterocyclic molecules 6,6ʹ-bis-(5,6- dialkyl-1,2,4-triazin-3-yl)-2,2ʹ-bipyridine (BTBP) and lanthanides(III): implications for the partitioning of actinides(III) and lanthanides(III). Dalton Trans., 13, 1645-1653.
  • 42. Aneheim, E., Mabile, N., & Ekberg, C. (2011). Exchange of TBP for a monoamide extraction ligand in a Ganex solvent-advantages & disadvantages. In 19th International Solvent Extraction Conference, 3-7 October 2011 (pp. 65-72). Santiago, Chile: Gecamin Ltd.
  • 43. Aneheim, E., Ekberg, C., Foreman, M. R., Löfström- -Engdahl, E., & Mabile, N. (2012). Studies of a solvent for GANEX applications containing CyMe4BTBP and DEHBA in cyclohexanone. Separ. Sci. Technol., 47, 663-669.[WoS]
  • 44. Huizenga, J., & Magnusson, L. (1951). Oxidation-reduction reactions of neptunium (IV) and (V). J. Am. Chem. Soc., 73, 3202-3206.[Crossref]
  • 45. Aneheim, E., Ekberg, C., Modolo, G., & Wilden, A. (2015). Single centrifugal contactor test of a proposed group actinide extraction process for partitioning and transmutation purposes. Separ. Sci. Technol., 50, 1554-1559. [WoS]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_nuka-2015-0115
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.