Preferences help
enabled [disable] Abstract
Number of results
2015 | 60 | 3 | 615-620
Article title

235U isotopic characterization of natural and enriched uranium materials by using multigroup analysis (MGA) method at a defined geometry using different absorbers and collimators

Title variants
Languages of publication
Characterization of nuclear materials is an important topic within the context of nuclear safeguards, homeland security and nuclear forensics. This paper deals with the performance of multigroup gamma-ray analysis (MGA) method using the X- and γ-rays in the 80-130 keV region and enrichment meter principle (EMP) based on the analysis of 185.7 keV peak for a certain geometry using different absorbers and collimators. The results from MGA and those of EMP are compared. In particular, the effect of aluminum/lead absorbers and lead collimator on the enrichment determination of 235U in natural and low enriched samples is investigated in a given source-detector geometry. The optimum diameter/height ratio for the Pb-collimator is found to be Dc/Hc = 1.4-1.6 in the chosen geometry. In order to simulate the container walls, ten different thicknesses of Al-absorbers of 141 to 840 mg·cm-2 and six different thicknesses of Pb-absorbers of 1120-7367 mg·cm-2 are interposed between sample and detector. The calibration coefficients (% enrichment/cps) are calculated for each geometry. The comparison of the MGA and EMP methods shows that the enrichment meter principle provides more accurate and precise results for 235U abundance than those of MGA method at the chosen geometrical conditions. The present results suggest that a two-step procedure should be used in analyses of uranium enrichment. Firstly MGA method can be applied in situ and then EMP method can be used at a defined geometry in laboratory.
Physical description
1 - 9 - 2015
20 - 5 - 2015
24 - 9 - 2014
25 - 9 - 2015
  • 1. Hofstetter, K. J., & Beals, D. M. (2005). Comparison of CdTe and CdZnTe detectors for fi eld determination of uranium isotopic enrichments. J. Radioanal. Nucl. Chem., 263(1), 171-176.
  • 2. Desideri, D., Meli, M. A., Roselli, C., & Testa, C. (2004). Analytical techniques for the separation and determination of transuranium element ultratraces in depleted uranium ammunitions. Int. J. Environ. Anal. Chem., 84(5), 331-339.
  • 3. Mortreau, P., & Berndt, R. (2005). Attenuation of a non-parallel beam of gamma radiation by thick shielding - application to the determination of the 235U enrichment with NaI detectors. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 550, 675-690.
  • 4. Korob, R. O., & Blasiyh Nuňo, G. A. (2006). A simple method for the absolute determination of uranium enrichment by high-resolution · spectrometry. Appl. Radiat. Isot., 64(5), 525-531.[Crossref]
  • 5. Ramebäck, H., Vesterlund, A., Tovedal, A. Nygren, U., Wallberg, L., Holm, E., Ekberg, C., & Skarnemark, G. (2010). The jackknife as an approach for uncertainty assessment in gamma spectrometric measurements of uranium isotope ratios. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 268(16), 2535-2538. DOI: 10.1016/j. nimb.2010.05.055.[Crossref]
  • 6. Smith Jr, H. A. (1991). The measurement of uranium enrichment. In Passive nondestructive assay of nuclear materials. (NUREG/CR-5550).
  • 7. Abousahl, S., Michiels, A., Bickel, M., Gunnink, R., & Verplancke, J. (1996). Applicability and limits of the MGAU code for the determination of the enrichment of uranium samples. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 368(2), 443-448.
  • 8. Berlizov, A. N. Gunnink, R., Zsigari, J. Nguyen, C. T., & Tryshyn, V. V. (2007). Performance testing of the upgraded uranium isotopics multi-group analysis code MGAU. Nucl. Instrum. Methods Phys. Res. Sect. AAccel. Spectrom. Dect. Assoc. Equip., 575, 498-506. DOI: 10.1016/j.nima.2007.02.099.[Crossref]
  • 9. Morel, J., Hill, C., Bickel, M., Alonso-Munoz, A., Napier, S., & Thaurel, B. (2000). Results from the international evaluation exercise for uranium enrichment measurements. Appl. Radiat. Isot., 52(3), 509-522.[Crossref]
  • 10. Dragnev, T. (1993). Intrinsically calibrated gamma and x-ray measurements of plutonium. Appl. Radiat. Isot., 44(3), 613-619. DOI: 10.1016/0969-8043(93)90178-D.[Crossref]
  • 11. Gunnink, R., Ruhter, W. D., Miller, P., Goerten, J., Swinhoe, M., Wagner, H., Verplancke, J., Bickel, M., & Abousahl, S. (1994). MGA: A new analysis code for measuring U-235 enrichments in arbitrary samples. In IAEA Symposium on International Safeguards, Vienna, Austria, March 8-14, 1994. Lawrence Livermore National Laboratory. (UCRL-JC-114713).
  • 12. Gunnink, R., & Ruhter, W. D. (1990). MGA: A gamma- ray spectrum analysis for determining plutonium isotopic abundances. Lawrence Livermore National Laboratory. (UCRL-103220, Vols. 1-2).
  • 13. Clark, D. (1996). U235: A gamma-ray spectrum analysis code for uranium isotopic determination. Lawrence Livermore National Laboratory. (UCRLID-125727).
  • 14. Clark, D. (1998). The CZTU uranium concentration analysis code. Lawrence Livermore National Laboratory. (UCRL-IC-131172).
  • 15. Yücel, H., & Dikmen, H. (2009). Uranium enrichment measurements using the intensity ratios of self-fluorescence X-rays to 92* keV gamma ray in UXKα spectral region. Talanta, 78(2), 410-417.[WoS]
  • 16. Yücel, H. (2007). The applicability of MGA method for depleted and natural uranium isotopic analysis in the presence of actinides (232Th, 237Np, 233Pa and 241Am). Appl. Radiat. Isot., 65(11), 1269-1280. DOI: 10.1016/j.apradiso.2007.05.07[WoS][Crossref]
  • 17. Nir-El, Y. (2000). Isotopic analysis of uranium in U3O8 by passive gamma-ray spectrometry. Appl. Radiat. Isot., 52(3), 753-757.[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.