PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2015 | 60 | 3 | 651-655
Article title

Application of the new Monte Carlo code AlfaMC to the calibration of alpha-particle sources

Content
Title variants
Languages of publication
EN
Abstracts
EN
Measurements of α-particle sources require corrections to the counting rate due to scattering and self-absorption in the source and the backing material. In this study, we describe a simple procedure to estimate these corrections using the new Monte Carlo code AlfaMC to consider the effects of scattering and self-absorption conjointly, and so to determine the activity of α emitters. The procedure proposed was applied to 235UO2 sources deposited on highly polished platinum backings. In general, the dependence of the efficiency with source thickness was in good agreement with a simple model considering a linear and a hyperbolic behavior for thin and thick sources, respectively, although significant deviations from this model were found for very thin sources. For these very thin sources, the Monte Carlo simulation revealed to be as a required method in the primary calibration of α-particle sources. The efficiency results obtained by simulation with AlfaMC were in agreement with available efficiency data.
Publisher
Journal
Year
Volume
60
Issue
3
Pages
651-655
Physical description
Dates
published
1 - 9 - 2015
accepted
20 - 5 - 2015
received
24 - 9 - 2014
online
25 - 9 - 2015
References
  • 1. Crawford, J. A. (1949). Theoretical calculations concerning backscattering of alpha particles. In The transuranium elements (Part II, pp. 1307-1326). New York: McGraw-Hill.
  • 2. Lucas, L. L., & Hutchinson, J. M. R. (1976). Study of the scattering correction for thick uranium-oxide and other α-particle sources - I: Theoretical. Appl. Radiat. Isot., 27, 35-42.
  • 3. Rossi, B. B., & Staub, H. H. (1949). Ionization chambers and counters. Experimental techniques. New York: McGraw-Hill.
  • 4. Semkow, T. M., Jeter, H. W., Parsa, B., Parekh, P. P., Haines, D. K., & Bari, A. (2005). Modeling of alpha mass-effi ciency curve. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 538, 790-800.
  • 5. White, P. H. (1970). Alpha and fission counting of thin foils of fissile material. Nucl. Instrum. Methods, 79, 1-12.
  • 6. Williams, E. J. (1940). Multiple scattering of fast electrons and alpha particles, and “curvature” of cloud tracks due to scattering. Phys. Rev., 58, 292-306.
  • 7. Ballaux, C. (1985). Note on the scattering corrections in 2 πα counting. Appl. Radiat. Isot., 36, 822-824.
  • 8. Deruytter, A. J. (1962). Evaluation of the absolute activity of alpha emitters and of the number of nuclei in thin alpha active layers. Nucl. Instrum. Methods, 15, 164-170.
  • 9. Hutchinson, J. M. R., Lucas, L. L., & Mullen, P. A. (1976). Study of the scattering correction for thick uranium-oxide and other α-particle sources - II: Experimental. Appl. Radiat. Isot., 27, 43-45.
  • 10. Walker, D. H. (1965). An experimental study of the backscattering of 5.3-MeV alpha particles from platinum and monel metal. Appl. Radiat. Isot., 16, 183-189.[Crossref]
  • 11. Fernández Timón, A., Jurado Vargas, M., & Ziegler, J. F. (2014). Application of alpha particle transport to the modelization of effi ciency curves in proportional counters. J. Radioanal. Nucl. Chem., 302, 297-302.
  • 12. Ferrero, J., Roldán, C., Aceña, M., & García-Toraño, E. (1990). Backscattering and self-absorption corrections in the measurement of alpha-emitters in 2 π geometry. Nucl. Instrum. Methods Phys. Res. Sect. AAccel. Spectrom. Dect. Assoc. Equip., 286, 384-387.
  • 13. Jurado Vargas, M., & Fernández Timón, A. (2004). Scattering and self-absorption corrections in the measurement of α-particle emitters in 2 π geometry. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 217, 564-571.
  • 14. Jurado Vargas, M., & Fernández Timón, A. (2005). Dependence of self-absorption on thickness for thin and thick alpha-particle sources of UO2. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 548, 432-438.
  • 15. Ziegler, J. F., Biersack, J. P., & Littmark, U. (1985). The stopping and range of ions in solids. New York: Pergamon Press.
  • 16. Peralta, L., & Louro, A. (2014). AlfaMC: A fast alpha particles transport Monte Carlo code. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 737, 163-169.
  • 17. Berger, M. J., Coursey, J. S., Zucker, M. A., & Chang, J. (2011). Stopping-power and range tables for helium ions. Retrieved April 24, 2014, from http://physics.nist.gov/PhysRefData/Star/Text/ASTAR.html.
  • 18. Vavilov, P. V. (1957). Ionization losses of high-energy heavy particles. Sov. Phys. JETP, 5, 749-751.
  • 19. Laboratoire National Henri Becquerel. (2008). Atomic & Nuclear Data. Retrieved April 24, 2014, from http://www.nucleide.org/NucData.htm.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_nuka-2015-0113
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.